Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp39-cp39-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp38-cp38-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp37-cp37m-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.7m manylinux: glibc 2.12+ x86-64

tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp36-cp36m-manylinux2010_x86_64.whl (2.5 MB view details)

Uploaded CPython 3.6m manylinux: glibc 2.12+ x86-64

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 391371a9c6566670876fc6608c07358e7108c0a47b3bf3fcb3068d314053c49b
MD5 1c069d51686e080606965dddcdc084b8
BLAKE2b-256 4f654adf7fc4468af44b98cb08448045f415a6245f8086a99fbf81ca2952478e

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp39-cp39-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp39-cp39-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98ea222de7788da66f2e5f170850a741871f6d96b15ef4b94142fe4fe1764e24
MD5 e34ac5bcfa6aec94770fd7a1e90defbe
BLAKE2b-256 7ab0beef85a71112d6cde0001c9e4281d7da20a60fd21c26353ae98477ba34e7

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 3807bc8ea1f4dd29955db69632f2762e286c48c9feb794b7777d12685d2cc484
MD5 7f752e37514fe6482ab88611c06ccc0c
BLAKE2b-256 250c5885442d614803a423293cffb434564c77a3ca9bacfb884d80124a12a3bb

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8e703cd03c2c02bc880398b2b716dfdd98070ddc5f1ee7419a637a160109d4a3
MD5 bb5d37c14015098b07c80e3f70cf8a42
BLAKE2b-256 e424c4bfdabdcbd1a08811b7e49e51b04ef649243a6d6639b2ac1309d2e872e1

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp38-cp38-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp38-cp38-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 76d886e1176d9a7c260ece3c3047da8fc492a3e4608a4964eb7ef09132ea5c91
MD5 0960024312fbadd47abc054cddcfbd05
BLAKE2b-256 2c94d909e4846d0e30b46518dbb8f7862267e45d88dac935a530ae5929dc1f4e

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1371c40778534b099a758af898f9fd4ae9a6688858e4977944e6712e4650fc5a
MD5 8f6f00faf4db3d90b969d78f390acd21
BLAKE2b-256 598264748977e8e0ced26c9d7b2630980cd2af9becde4fa590ec0472cee66c13

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 484306befa91dfdca08362565deabe93a353549a66e99a25203904f7c26ce16c
MD5 0b55606d75bf89706f1e78ca082dbd3c
BLAKE2b-256 d45e80e23d06c04af60d5843953d3f57ae3a75fe13c535fed457e74f0f57be27

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp37-cp37m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp37-cp37m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 a2e75d6228815b18d3f583427ec61be987af9ce6c6eec89b9b55f525f4efb909
MD5 fee4390dd3a856760275cf7827d92c41
BLAKE2b-256 c92b71022073bd23f03dc22170b76035d2e5c5602803c46c294ff59571bdc99d

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 5deeac0249466c183cdba053e8900dc1087c9ff9e4fd0957730f83acd4462022
MD5 1a8f8861894a770045efd7a22e302ce3
BLAKE2b-256 86aa0591f0214688115cdcbb8a6c39271c7f1405e0f07b5bc2f6042963d56765

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 d7f6b59dd75e691b601d5c902d67ef82b42e6442aa8acd5d3c788ac1efe6d8c7
MD5 873fe1bb0de7a21169ee9cf13d2495f2
BLAKE2b-256 6d65e8e1249e27c620f6892710f5652aa483417acce881806de6969daf9ab224

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp36-cp36m-manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp36-cp36m-manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 68baebdbfef328f9f0e1163a55e31a9cb878c9086639069c14f216e5c58a3934
MD5 d38c3f141bd4ef8241b0b90ad9b86f06
BLAKE2b-256 edf27e24d04af380c73986351f6893f7f7632deba0d01c5fa38f5578ea42675d

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210428152043-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 fb8e74bb950fc03eda3daa896df4a3ffe30938e255a3e4e799c64d8405dcdd2f
MD5 94b6c981b76962a00fc8296d2653a792
BLAKE2b-256 2b1a19dc69ff76db63224a9e4aa11bba93d3c712148876835c5d542ef8aeee43

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page