Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ed715b20eac28845259c13085a7856706d0d55efa6219470c6471c98f2163678
MD5 63f80aec841409662e2d56672a9f2105
BLAKE2b-256 16a03c23f298806afb268cbe02c789568002d297a7c0491a3db0a938724b2ec4

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 50a7996910a5afc389dd5996fdab1a144c6e263fa4dab41a644a5d8b4f4b7eec
MD5 55feb8fc6204fd7e37a839d4f0a028ea
BLAKE2b-256 e2715e37533720c30ef5c39ed00b327fc1039829fcb30d20c8a039453b27f831

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 81ab97cf87204abb6ad27fac624bb651ac87b8d4c79f9a5830b80331a7cf13d7
MD5 95cd37be99e8271b4f43de0a0216cc4a
BLAKE2b-256 f059197cfbf37d6283c5d1ed3227c769b203ad561a30ce68bb27758da340bd01

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 64ff7db4018315d75b130edd5def902568f4568946cc45cb2818fd37912a9db3
MD5 76807fd99274e1fadf15c7fb69e1118b
BLAKE2b-256 d80fa6f6a0f4a5b5d5443f24809ac9b586c3c48b87bcce0a95e0093a54311b6f

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 e883aacc3a94aa99d32e945ca83e3e03d61ca6df4471cfb33c080cc776829374
MD5 23824be5c89f0773d4e91abf4f3db10c
BLAKE2b-256 63f7824c7f63f7852aa0c22ced421d9262a10f695b82954a0e3a47738279dc23

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 ddceb8fdd6db495f682008216b2e12a343627c9a95fc26e9d476ea9742599263
MD5 3c6ef593861b0a81ad1d86fe7843ef4f
BLAKE2b-256 7ff70acc459426b47b29d459657bcb672c3f60f958676d9657d1ce620f006fcf

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 8077d6c334d415d378c8d7e9fe8fc8ed6645e50cb25b50a7c855cf0638cbee71
MD5 0feb6dd3696fcd4328cd20255fc3a906
BLAKE2b-256 cb01223a5f2d889a9c41fb3cec858db852a74ad20cc5531966ecfd8a8dc91660

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 f97b22bdfacdf3bf25f7d924ab6644ed8a2e80af6c0898dccbdc890b55bfd85e
MD5 ac57939a15d0ea2d8fdfc030f5a2dce3
BLAKE2b-256 7007478a7a7fd2b6961f0d03ee0d63cb4507026d9f76b661a8e4321d55dc1aea

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 6ec110e90a2152d38c873cce2f834c3c7e108781c0f53eae98e2863c8794c132
MD5 988c634e56ba927cbad47575227587e4
BLAKE2b-256 e0a608c6682d6d7904e65d742824200984384940d418f21a092ec9a9169a7ab3

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 ce586f23eb6de6dd1f3d82a01071e56e7b1b6c7ac86f4d2e3f73463a0213382c
MD5 92d9f16e79d409e4396f0c61883eef08
BLAKE2b-256 7433ab34fde5e981c94f28bb4295bacf217a64893c37e4f3a3aac50f88dad0c0

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 8a2e263f1f0f5bb9f6a2a20a2fcd420391ec005a9bfecf8ccc7ad6e1a0be61fc
MD5 6802cd2e38173badc30c238435dd0209
BLAKE2b-256 2dd6d83d40ec6ce4e8a77a9aeb3db391212d6ce3dddc5306e8abc9aea1cf64c6

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507012430-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 e80c1b14eb38b1222853fac7a40b4334661cb49d4eb7625cc63848d747033375
MD5 1dc5ca7e943825bafa1b6eec91b38eb2
BLAKE2b-256 60fb5a85f9e03171996315712e9a39be6bde11545ff8783a220e2b51b5e1fcc9

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page