Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 ea7babb035132c685ae62dd1641541581c2cb390f966a9f81f86bc8bce376cd5
MD5 1c6aa16fc45037c14a4490359d4eb31b
BLAKE2b-256 89c90163dd861c4298f92963c4b08b24dab2bc67ccae935749f562ae1c13c334

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 4b537f8d90b18ea0b2405f24244e802bf62d86329206675c37dcb8dc798367c6
MD5 fa01320abd3fe6a7475656930956ff46
BLAKE2b-256 7b8c2ac10c0fa9ed3bf998756abcdd5b41705ef0bfe849789483028a19277317

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 099739de29353d38ea72e80c92e1ab488e64f4222c7a5d1f37191ddc7aeba32c
MD5 b3c274227b379dfbec94beb510a72098
BLAKE2b-256 80829706e3a95eea4a41656d6eef04e77ccecd6192b864a92a6775cfa5e2a2dc

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 4c8a7857736ca985aada6cde101a3f1ef2597087dffa468144a40f329d8490b4
MD5 c1ae308dc088a5deca3bde6cd9750e24
BLAKE2b-256 8108f0732bdb28efd7549199e92c80091be17db81c97afb518fcb728041e41b4

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 98cd565b089a11801adb2f79280e856373de381d6c3e6a5ed865fba41c8e3b19
MD5 8c5fa7bf985981292b73b3cfa3b2df45
BLAKE2b-256 1d53963f36674964ec9734bf648c04141cd59a0e65ced16a036ce60a7dd5a890

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 9712f65880e00ff9a39314f5a720295d8ca16121386fd8279a0c875cafd496ed
MD5 ad1f75cbb35cfb000d037499a2d8b366
BLAKE2b-256 c1b51bed64efc3e005394d37d3f9cfd62bdf96a17ec1b4789f892f2da170af97

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 5bb16a63813e8ff40a7cc378c5df966616d9d118b090ef1a384bfbb39eb96a3e
MD5 8a71e0919d8e30ef56869b9c8efa8ec0
BLAKE2b-256 eae6c8655a735356da69acb35f2daa9d31bc08ed94483095448a0f13d14b9afc

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 40dd4bdd28e6c033c0bcfdf88e9c0a2c6370f47cb5275220b90588c6a064188f
MD5 a58ecf869e0a712b714fe578cd1ee975
BLAKE2b-256 d93f41ad9b2485364357502e6129ab3591aed2818344dbf03c08b73c9f10a7d1

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 27c7cb418a1adefeb9aa0ead4a9394e6851414e94eca43af7f7a4008ad72f21d
MD5 471462691fd4bee40709a99731ebbf7a
BLAKE2b-256 f3833baa40d8b8670488f23f53373cd932ba68287fc59b63de8590859ab00e79

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 77c442993685ea01c17ec3dfbb14ff11e91c3eb98c4bbc61c1b60324208429be
MD5 5a3852b95e532bbeee931bb6233baf3e
BLAKE2b-256 f99d82c1c46a41c5ad6c504628769ed7285b9815202d7c5339a9c30dc7f9a2a3

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 c913a2857e6aac9ccfb473dad62f017f8535ee11b4dde30c40a61e8d2503ab19
MD5 adb3c7713e19dcc1075656a18053e69e
BLAKE2b-256 5e60f0a1244cd7a9f3fca4f1c188dc59f03c5e69aae97ea29ce241efcf074f75

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210507143109-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 b3e42a6f5b6884682a5f5d4be146098a694e334df6fb8a406606c54a56d8a883
MD5 2c7d20cb0227dc2c75b82d80ae6a5bd2
BLAKE2b-256 85bfd09e242780d4be455162a4ac995040a2991ea26a836cd6c1a5cae9f8c051

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page