Skip to main content

TensorFlow IO

Project description




TensorFlow I/O

GitHub CI PyPI License Documentation

TensorFlow I/O is a collection of file systems and file formats that are not available in TensorFlow's built-in support. A full list of supported file systems and file formats by TensorFlow I/O can be found here.

The use of tensorflow-io is straightforward with keras. Below is an example to Get Started with TensorFlow with the data processing aspect replaced by tensorflow-io:

import tensorflow as tf
import tensorflow_io as tfio

# Read the MNIST data into the IODataset.
dataset_url = "https://storage.googleapis.com/cvdf-datasets/mnist/"
d_train = tfio.IODataset.from_mnist(
    dataset_url + "train-images-idx3-ubyte.gz",
    dataset_url + "train-labels-idx1-ubyte.gz",
)

# Shuffle the elements of the dataset.
d_train = d_train.shuffle(buffer_size=1024)

# By default image data is uint8, so convert to float32 using map().
d_train = d_train.map(lambda x, y: (tf.image.convert_image_dtype(x, tf.float32), y))

# prepare batches the data just like any other tf.data.Dataset
d_train = d_train.batch(32)

# Build the model.
model = tf.keras.models.Sequential(
    [
        tf.keras.layers.Flatten(input_shape=(28, 28)),
        tf.keras.layers.Dense(512, activation=tf.nn.relu),
        tf.keras.layers.Dropout(0.2),
        tf.keras.layers.Dense(10, activation=tf.nn.softmax),
    ]
)

# Compile the model.
model.compile(
    optimizer="adam", loss="sparse_categorical_crossentropy", metrics=["accuracy"]
)

# Fit the model.
model.fit(d_train, epochs=5, steps_per_epoch=200)

In the above MNIST example, the URL's to access the dataset files are passed directly to the tfio.IODataset.from_mnist API call. This is due to the inherent support that tensorflow-io provides for HTTP/HTTPS file system, thus eliminating the need for downloading and saving datasets on a local directory.

NOTE: Since tensorflow-io is able to detect and uncompress the MNIST dataset automatically if needed, we can pass the URL's for the compressed files (gzip) to the API call as is.

Please check the official documentation for more detailed and interesting usages of the package.

Installation

Python Package

The tensorflow-io Python package can be installed with pip directly using:

$ pip install tensorflow-io

People who are a little more adventurous can also try our nightly binaries:

$ pip install tensorflow-io-nightly

Docker Images

In addition to the pip packages, the docker images can be used to quickly get started.

For stable builds:

$ docker pull tfsigio/tfio:latest
$ docker run -it --rm --name tfio-latest tfsigio/tfio:latest

For nightly builds:

$ docker pull tfsigio/tfio:nightly
$ docker run -it --rm --name tfio-nightly tfsigio/tfio:nightly

R Package

Once the tensorflow-io Python package has been successfully installed, you can install the development version of the R package from GitHub via the following:

if (!require("remotes")) install.packages("remotes")
remotes::install_github("tensorflow/io", subdir = "R-package")

TensorFlow Version Compatibility

To ensure compatibility with TensorFlow, it is recommended to install a matching version of TensorFlow I/O according to the table below. You can find the list of releases here.

TensorFlow I/O Version TensorFlow Compatibility Release Date
0.17.1 2.4.x Apr 16, 2021
0.17.0 2.4.x Dec 14, 2020
0.16.0 2.3.x Oct 23, 2020
0.15.0 2.3.x Aug 03, 2020
0.14.0 2.2.x Jul 08, 2020
0.13.0 2.2.x May 10, 2020
0.12.0 2.1.x Feb 28, 2020
0.11.0 2.1.x Jan 10, 2020
0.10.0 2.0.x Dec 05, 2019
0.9.1 2.0.x Nov 15, 2019
0.9.0 2.0.x Oct 18, 2019
0.8.1 1.15.x Nov 15, 2019
0.8.0 1.15.x Oct 17, 2019
0.7.2 1.14.x Nov 15, 2019
0.7.1 1.14.x Oct 18, 2019
0.7.0 1.14.x Jul 14, 2019
0.6.0 1.13.x May 29, 2019
0.5.0 1.13.x Apr 12, 2019
0.4.0 1.13.x Mar 01, 2019
0.3.0 1.12.0 Feb 15, 2019
0.2.0 1.12.0 Jan 29, 2019
0.1.0 1.12.0 Dec 16, 2018

Performance Benchmarking

We use github-pages to document the results of API performance benchmarks. The benchmark job is triggered on every commit to master branch and facilitates tracking performance w.r.t commits.

Contributing

Tensorflow I/O is a community led open source project. As such, the project depends on public contributions, bug-fixes, and documentation. Please see:

Build Status and CI

Build Status
Linux CPU Python 2 Status
Linux CPU Python 3 Status
Linux GPU Python 2 Status
Linux GPU Python 3 Status

Because of manylinux2010 requirement, TensorFlow I/O is built with Ubuntu:16.04 + Developer Toolset 7 (GCC 7.3) on Linux. Configuration with Ubuntu 16.04 with Developer Toolset 7 is not exactly straightforward. If the system have docker installed, then the following command will automatically build manylinux2010 compatible whl package:

#!/usr/bin/env bash

ls dist/*
for f in dist/*.whl; do
  docker run -i --rm -v $PWD:/v -w /v --net=host quay.io/pypa/manylinux2010_x86_64 bash -x -e /v/tools/build/auditwheel repair --plat manylinux2010_x86_64 $f
done
sudo chown -R $(id -nu):$(id -ng) .
ls wheelhouse/*

It takes some time to build, but once complete, there will be python 3.5, 3.6, 3.7 compatible whl packages available in wheelhouse directory.

On macOS, the same command could be used. However, the script expects python in shell and will only generate a whl package that matches the version of python in shell. If you want to build a whl package for a specific python then you have to alias this version of python to python in shell. See .github/workflows/build.yml Auditwheel step for instructions how to do that.

Note the above command is also the command we use when releasing packages for Linux and macOS.

TensorFlow I/O uses both GitHub Workflows and Google CI (Kokoro) for continuous integration. GitHub Workflows is used for macOS build and test. Kokoro is used for Linux build and test. Again, because of the manylinux2010 requirement, on Linux whl packages are always built with Ubuntu 16.04 + Developer Toolset 7. Tests are done on a variatiy of systems with different python3 versions to ensure a good coverage:

Python Ubuntu 18.04 Ubuntu 20.04 macOS + osx9 Windows-2019
2.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: N/A
3.7 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:
3.8 :heavy_check_mark: :heavy_check_mark: :heavy_check_mark: :heavy_check_mark:

TensorFlow I/O has integrations with many systems and cloud vendors such as Prometheus, Apache Kafka, Apache Ignite, Google Cloud PubSub, AWS Kinesis, Microsoft Azure Storage, Alibaba Cloud OSS etc.

We tried our best to test against those systems in our continuous integration whenever possible. Some tests such as Prometheus, Kafka, and Ignite are done with live systems, meaning we install Prometheus/Kafka/Ignite on CI machine before the test is run. Some tests such as Kinesis, PubSub, and Azure Storage are done through official or non-official emulators. Offline tests are also performed whenever possible, though systems covered through offine tests may not have the same level of coverage as live systems or emulators.

Live System Emulator CI Integration Offline
Apache Kafka :heavy_check_mark: :heavy_check_mark:
Apache Ignite :heavy_check_mark: :heavy_check_mark:
Prometheus :heavy_check_mark: :heavy_check_mark:
Google PubSub :heavy_check_mark: :heavy_check_mark:
Azure Storage :heavy_check_mark: :heavy_check_mark:
AWS Kinesis :heavy_check_mark: :heavy_check_mark:
Alibaba Cloud OSS :heavy_check_mark:
Google BigTable/BigQuery to be added
Elasticsearch (experimental) :heavy_check_mark: :heavy_check_mark:
MongoDB (experimental) :heavy_check_mark: :heavy_check_mark:

References for emulators:

Community

Additional Information

License

Apache License 2.0

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 20729f6dc2d03a87f05e7864544255c70015d4038463c96c15b7e1e0bc49a463
MD5 d9bee9a5b4add66b46ffe0e8c3162c2e
BLAKE2b-256 834d229b5e9a1490224beac73e9b8640152b49724140ebbdbf233c016a057c50

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp39-cp39-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 d22b609b04a071fa16d75fef32c115bd9ab80b293d51c939b3aa3e0a40fbafe3
MD5 1a7c24223aad2f333ab2869e5071b7fe
BLAKE2b-256 41738d2f0d9750d581ff7109fc26abf7118c58a7c347e8c1d5a06d2803c11cb6

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp39-cp39-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp39-cp39-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 29f803846b9f7edf69b51ef75c80d4ba075ff86d38dfb2d43d0252e3d23240b7
MD5 7f4d6bf30030db52f6570c17ec840029
BLAKE2b-256 14b7dc1153c2a1a4728abf8bdc2f17486ba21c30a0e0d29adba6d8a6021b2d98

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp38-cp38-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 8c08ce1e37d232717eb1a529c8fdf7cb27fc9e45a91197b7f410e67fb847210b
MD5 4453c7d54b3612569d874178c6e812e0
BLAKE2b-256 0dfac522d419dbc15d0d6bcf73ae2610807d62bb7271abd314e89711c50ba71e

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp38-cp38-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 1e03706852e1b66c02754282a2c7f49bfc3ef68bce0c2e53a17f8bfc33e48a4d
MD5 4d5083ede5f4b268c4c4a70f4ba42138
BLAKE2b-256 795f89b42df460ddcdbaa8d91abccdaba2b1ec0f6f2c28d72b0db2829249f5df

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp38-cp38-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp38-cp38-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 1a1898d5f69be36bf055587bbcb155ad9eee282ebdb778eaff4a73781b54d3b0
MD5 d22f8a8ed35be818290f46345ec95107
BLAKE2b-256 496a01e872c243cab41b91e1ced258f4b79a050951b55a1cc17370f64092a7ab

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp37-cp37m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 d38fe3550b51f5c953366c480fb14ca7f4d679eab348a5677e1ec1788bba3d1f
MD5 cb45648cc50f6cc47d1d3225d831eee1
BLAKE2b-256 b1d02b6dff6bc08ede13b28b2d5a9921089bea233ed12abbfe92631fc7838a78

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp37-cp37m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 2cb3d065e3766a6a64684825ff1850b02ef457bc9b4ee9257b4f7cdcc8964fe2
MD5 873d65d046575ad826a62fd13634f8f0
BLAKE2b-256 8a3713efad54991e77755a7f5dd74fd90b8d34ac4fbf64664fe2b772ff5940c5

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp37-cp37m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp37-cp37m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 24340445977820943bddba59b5e8bee4a999da77b1e2c86b5f9799ffb5d09980
MD5 03194f137717fbae34d097975db31969
BLAKE2b-256 5d05ea5d6ca8c9b0c4b70bab1e0f1957d5275e88c7eca7882e8d113816f41528

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp36-cp36m-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3d8d5bd051571ca21ddea1b6a6e3d26518fe53fb66ac6618f3dc7a7389b8530d
MD5 cf5806925e18b93395fb166c4186b498
BLAKE2b-256 1c5e6b2f96f72423d22ecbfead268cdfb0190c50e11e2d6632a281716124f814

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp36-cp36m-manylinux_2_12_x86_64.manylinux2010_x86_64.whl
Algorithm Hash digest
SHA256 886c484269e479678f5f9050c18c007cde83a386370a190307123b75e5773dd7
MD5 48205d9e30de510129ef6ea2555b9ec0
BLAKE2b-256 5840313b070d7f450adfad288085428e4266f0c8e296bd245d914af2779abf13

See more details on using hashes here.

File details

Details for the file tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp36-cp36m-macosx_10_14_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow_io_plugin_gs_nightly-0.18.0.dev20210511105045-cp36-cp36m-macosx_10_14_x86_64.whl
Algorithm Hash digest
SHA256 319973427fc0dee2609ec17f9f8a1833ffa0bcb45b46e6b1b91247f9521c1d17
MD5 ea92492069a1499702dd4ea840f552eb
BLAKE2b-256 4ae34f2afc9fd3443bb2ddd4bc6b72d39a867710dc09b1e6912b91c52ff9648f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page