Skip to main content

A package with Tensorflow (both CPU and GPU) implementation of most popular Kernels for kernels methods (SVM, MKL...).

Project description

Tensorflow-kernels

Logo

A package with Tensorflow (both CPU and GPU) implementation of most popular Kernels for kernels methods (SVM, MKL...).

Those kernels works with tensor as inputs.

The main idea of this project is to exploit the powerfull of GPUs and modern CPUs on matrix and kernels elaborations. Actually the implemented kernels are:

  • Linear
  • RBF
  • Polynomial
  • CosineSimilarity
  • Fourier
  • Spline

Attention: Due to the GPUs usage the precision of decimal numbers may be different, and hence, the results may be slightly differs as well

Attention 2: Due to exploit the power of GPUs it's strongly recommended to work with float32 or even in half precision float16.

Examples:

A simple example with PolynomialKernel

import numpy as np
import tensorflow as tf
from kernels.polynomial_kernel import PolynomialKernel
from kernels import array_to_tensor, tensor_to_array

n = 2000
p = 1000
a = np.random.random((n, p)).astype(np.float32)
b = np.random.random((n, p)).astype(np.float32)

x = array_to_tensor(a, dtype=tf.float32)
y = array_to_tensor(b, dtype=tf.float32)


poly = PolynomialKernel(scale=1, bias=0, degree=4)
kernel = poly.compute(x, y)

print(tensor_to_array(kernel, dtype=np.float32))

A simple example with PSpectrumKernel. Attention: PSpectrum is still experimental and it exploits eager computation in order to work properly. Furthermore it maybe won't works with Tensorflow 2.0 since some packages have been removed.

Attention 2: Due to the usage of the type tf.string computation will be shared between GPUs and CPUs.

Attention 3: This kernel return tensor with type tf.int64.

import numpy as np
import tensorflow as tf
from kernels.experimental.p_spectrum_kernel import PSpectrumKernel
from kernels import array_to_tensor, tensor_to_array

a = np.array(['aaaaaaaa','bbbbbbb','ccccc','aaaaaaa','cccccc','bbbbbb'])
b = np.array(['aaaaaaaa','bbbbbbb','aaaaaaa','cccccc'])

x = array_to_tensor(a, dtype=tf.string)
y = array_to_tensor(b, dtype=tf.string)

p_spectrum = PSpectrumKernel(p=3)

kernel = p_spectrum.compute(x, y)

print(tensor_to_array(kernel, dtype=np.float32))

Credits:

The idea was born by using methods available here: https://github.com/gmum/pykernels

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

tensorflow_kernels-0.1.2-py2-none-any.whl (14.2 kB view details)

Uploaded Python 2

File details

Details for the file tensorflow_kernels-0.1.2-py2-none-any.whl.

File metadata

  • Download URL: tensorflow_kernels-0.1.2-py2-none-any.whl
  • Upload date:
  • Size: 14.2 kB
  • Tags: Python 2
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.20.1 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.32.1 CPython/2.7.15rc1

File hashes

Hashes for tensorflow_kernels-0.1.2-py2-none-any.whl
Algorithm Hash digest
SHA256 c176e63d55742426304d7251b37d39db32752e72caf460afe67f3f8d5186828d
MD5 c655242dda9e63f7bcea9f9b413380e6
BLAKE2b-256 86f240785f4f02373a3833984f5478dd375a3dae1e1dfceb442d824908d7b977

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page