Skip to main content

A library for analyzing TensorFlow models

Project description

TensorFlow Model Analysis

Python PyPI Documentation

TensorFlow Model Analysis (TFMA) is a library for evaluating TensorFlow models. It allows users to evaluate their models on large amounts of data in a distributed manner, using the same metrics defined in their trainer. These metrics can be computed over different slices of data and visualized in Jupyter notebooks.

TFMA Slicing Metrics Browser

Caution: TFMA may introduce backwards incompatible changes before version 1.0.

Installation

The recommended way to install TFMA is using the PyPI package:

pip install tensorflow-model-analysis

pip install from the HEAD of the git:

pip install git+https://github.com/tensorflow/model-analysis.git#egg=tensorflow_model_analysis

pip install from a released version directly from git:

pip install git+https://github.com/tensorflow/model-analysis.git@v0.21.3#egg=tensorflow_model_analysis

If you have cloned the repository locally, and want to test your local change, pip install from a local folder.

pip install -e $FOLDER_OF_THE_LOCAL_LOCATION

Note that protobuf must be installed correctly for the above option since it is building TFMA from source and it requires protoc and all of its includes reference-able. Please see protobuf install instruction for see the latest install instructions.

Currently, TFMA requires that TensorFlow is installed but does not have an explicit dependency on the TensorFlow PyPI package. See the TensorFlow install guides for instructions.

To enable TFMA visualization in Jupyter Notebook:

  jupyter nbextension enable --py widgetsnbextension
  jupyter nbextension enable --py tensorflow_model_analysis

Note: If Jupyter notebook is already installed in your home directory, add --user to these commands. If Jupyter is installed as root, or using a virtual environment, the parameter --sys-prefix might be required.

Notable Dependencies

TensorFlow is required.

Apache Beam is required; it's the way that efficient distributed computation is supported. By default, Apache Beam runs in local mode but can also run in distributed mode using Google Cloud Dataflow and other Apache Beam runners.

Apache Arrow is also required. TFMA uses Arrow to represent data internally in order to make use of vectorized numpy functions.

Getting Started

For instructions on using TFMA, see the get started guide.

Compatible Versions

The following table is the TFMA package versions that are compatible with each other. This is determined by our testing framework, but other untested combinations may also work.

tensorflow-model-analysis apache-beam[gcp] pyarrow tensorflow tensorflow-metadata tfx-bsl
GitHub master 2.23.0 0.17.0 nightly (1.x/2.x) 0.24.0 0.24.0
0.24.0 2.23.0 0.17.0 1.15 / 2.3 0.24.0 0.24.0
0.23.0 2.23.0 0.17.0 1.15 / 2.3 0.23.0 0.23.0
0.22.2 2.20.0 0.16.0 1.15 / 2.2 0.22.2 0.22.0
0.22.1 2.20.0 0.16.0 1.15 / 2.2 0.22.2 0.22.0
0.22.0 2.20.0 0.16.0 1.15 / 2.2 0.22.0 0.22.0
0.21.6 2.19.0 0.15.0 1.15 / 2.1 0.21.0 0.21.3
0.21.5 2.19.0 0.15.0 1.15 / 2.1 0.21.0 0.21.3
0.21.4 2.19.0 0.15.0 1.15 / 2.1 0.21.0 0.21.3
0.21.3 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.0
0.21.2 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.0
0.21.1 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.0
0.21.0 2.17.0 0.15.0 1.15 / 2.1 0.21.0 0.21.0
0.15.4 2.16.0 0.15.0 1.15 / 2.0 n/a 0.15.1
0.15.3 2.16.0 0.15.0 1.15 / 2.0 n/a 0.15.1
0.15.2 2.16.0 0.15.0 1.15 / 2.0 n/a 0.15.1
0.15.1 2.16.0 0.15.0 1.15 / 2.0 n/a 0.15.0
0.15.0 2.16.0 0.15.0 1.15 n/a n/a
0.14.0 2.14.0 n/a 1.14 n/a n/a
0.13.1 2.11.0 n/a 1.13 n/a n/a
0.13.0 2.11.0 n/a 1.13 n/a n/a
0.12.1 2.10.0 n/a 1.12 n/a n/a
0.12.0 2.10.0 n/a 1.12 n/a n/a
0.11.0 2.8.0 n/a 1.11 n/a n/a
0.9.2 2.6.0 n/a 1.9 n/a n/a
0.9.1 2.6.0 n/a 1.10 n/a n/a
0.9.0 2.5.0 n/a 1.9 n/a n/a
0.6.0 2.4.0 n/a 1.6 n/a n/a

Questions

Please direct any questions about working with TFMA to Stack Overflow using the tensorflow-model-analysis tag.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file tensorflow_model_analysis-0.24.0-py3-none-any.whl.

File metadata

  • Download URL: tensorflow_model_analysis-0.24.0-py3-none-any.whl
  • Upload date:
  • Size: 1.6 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.48.2 CPython/3.7.6

File hashes

Hashes for tensorflow_model_analysis-0.24.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e915416285168486ee895bfd6a259c46aec1fbc6f123d5960f8cb04df368c9e5
MD5 026bb7889e0e29cabc90da8c2d6e824c
BLAKE2b-256 15505d867513b039d8f119573c8bd5d6f0418cbf1df8605e1eaa61608ae86da5

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page