Protobuf files from TensorFlow and TensorFlow-Serving
Project description
TensorFlow Protobuf
Imagine you want to talk to your model deployed with TF-Serving using gPRC and protobuf.
To convert your NumPy array, you'd need to use make_tensor_proto
function:
import tensorflow as tf
def np_to_protobuf(data):
return tf.make_tensor_proto(data, shape=data.shape)
Boom - you have a 2 GB dependency to deal with!
TensorFlow Protobuf
This project takes only the part you actually need for that: the protobuf files (compiled).
Installing it
pip install tensorflow-protobuf==2.3.0
Other available versions: 2.7.0
Using it
With it, your code will look like that:
from tensorflow.core.framework import tensor_pb2, tensor_shape_pb2, types_pb2
def dtypes_as_dtype(dtype):
if dtype == "float32":
return types_pb2.DT_FLOAT
raise Exception("dtype %s is not supported" % dtype)
def make_tensor_proto(data):
shape = data.shape
dims = [tensor_shape_pb2.TensorShapeProto.Dim(size=i) for i in shape]
proto_shape = tensor_shape_pb2.TensorShapeProto(dim=dims)
proto_dtype = dtypes_as_dtype(data.dtype)
tensor_proto = tensor_pb2.TensorProto(dtype=proto_dtype, tensor_shape=proto_shape)
tensor_proto.tensor_content = data.tostring()
return tensor_proto
def np_to_protobuf(data):
if data.dtype != "float32":
data = data.astype("float32")
return make_tensor_proto(data)
A bit more verbose, but without the 2GB baggage.
See a full example here: example.py
Have fun!
Building and compiling it
To see how we extract and compile the protobuf files, check tf-serving-proto.sh.
To use it:
TF_VERSION="2.3.0" ./tf-serving-proto.sh
Publishing on PyPI
If you want to build it for other versions and publish it, do this:
export TF_VERSION=2.3.0
echo ${TF_VERSION} > .version
python -m venv env
source env/bin/activate
./tf-serving-proto.sh
pip install wheel twine
python setup.py sdist bdist_wheel
twine check dist/*
twine upload --repository-url https://test.pypi.org/legacy/ dist/*
rm -rf tensorflow/ tensorflow_serving/
rm -rf tensorflow_protobuf.egg-info/ build/ dist/ __pycache__/
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tensorflow-protobuf-2.7.0.tar.gz
.
File metadata
- Download URL: tensorflow-protobuf-2.7.0.tar.gz
- Upload date:
- Size: 135.5 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 89073a618c3439ac75051621158f2de5d401ed3a683a4d86a68882c35a9f51d3 |
|
MD5 | 97d4b0bbd90caa2e0160b33a1d9169f7 |
|
BLAKE2b-256 | a53c3fdbf0c3309c048a77db15e45270801285cec3ccc6fdb5dca0638457ea3c |
File details
Details for the file tensorflow_protobuf-2.7.0-py3-none-any.whl
.
File metadata
- Download URL: tensorflow_protobuf-2.7.0-py3-none-any.whl
- Upload date:
- Size: 229.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.6.0 importlib_metadata/4.8.2 pkginfo/1.8.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.8.10
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 3b4ddf9c468160e2fa97130d9a3d46b182dfdd6f3c2fcb95ad7ff9d549b2dd0d |
|
MD5 | 0815a64a8d658f18af48a332bfd2d909 |
|
BLAKE2b-256 | b67fce1421b12d7a1abe9bfc1849b08b6c1e051af4cda6bb83a8adf83a860caa |