Skip to main content

RAdam implemented in Keras & TensorFlow

Project description

Keras RAdam

Travis Coverage Version Downloads License

[中文|English]

Unofficial implementation of RAdam in Keras and TensorFlow.

Install

pip install keras-rectified-adam

Usage

import keras
import numpy as np
from keras_radam import RAdam

# Build toy model with RAdam optimizer
model = keras.models.Sequential()
model.add(keras.layers.Dense(input_shape=(17,), units=3))
model.compile(RAdam(), loss='mse')

# Generate toy data
x = np.random.standard_normal((4096 * 30, 17))
w = np.random.standard_normal((17, 3))
y = np.dot(x, w)

# Fit
model.fit(x, y, epochs=5)

TensorFlow without Keras

from keras_radam.training import RAdamOptimizer

RAdamOptimizer(learning_rate=1e-3)

Use Warmup

from keras_radam import RAdam

RAdam(total_steps=10000, warmup_proportion=0.1, min_lr=1e-5)

Q & A

About Correctness

The optimizer produces similar losses and weights to the official optimizer after 500 steps.

Use tf.keras or tf-2.0

Add TF_KERAS=1 to environment variables to use tensorflow.python.keras.

Use theano Backend

Add KERAS_BACKEND=theano to environment variables to enable theano backend.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow-radam-0.10.0.tar.gz (11.3 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page