RAdam implemented in Keras & TensorFlow
Project description
Keras RAdam
Unofficial implementation of RAdam in Keras and TensorFlow.
Install
pip install keras-rectified-adam
Usage
import keras
import numpy as np
from keras_radam import RAdam
# Build toy model with RAdam optimizer
model = keras.models.Sequential()
model.add(keras.layers.Dense(input_shape=(17,), units=3))
model.compile(RAdam(), loss='mse')
# Generate toy data
x = np.random.standard_normal((4096 * 30, 17))
w = np.random.standard_normal((17, 3))
y = np.dot(x, w)
# Fit
model.fit(x, y, epochs=5)
TensorFlow without Keras
from keras_radam.training import RAdamOptimizer
RAdamOptimizer(learning_rate=1e-3)
Use Warmup
from keras_radam import RAdam
RAdam(total_steps=10000, warmup_proportion=0.1, min_lr=1e-5)
Q & A
About Correctness
The optimizer produces similar losses and weights to the official optimizer after 500 steps.
Use tf.keras
or tf-2.0
Add TF_KERAS=1
to environment variables to use tensorflow.python.keras
.
Use theano
Backend
Add KERAS_BACKEND=theano
to environment variables to enable theano
backend.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
tensorflow-radam-0.9.0.tar.gz
(11.3 kB
view hashes)