Tensorflow Recommenders, a TensorFlow library for recommender systems.
Project description
TensorFlow Recommenders
TensorFlow Recommenders is a library for building recommender system models using TensorFlow.
It helps with the full workflow of building a recommender system: data preparation, model formulation, training, evaluation, and deployment.
It's built on Keras and aims to have a gentle learning curve while still giving you the flexibility to build complex models.
Installation
Make sure you have TensorFlow 2.x installed, and install from pip
:
pip install tensorflow-recommenders
Documentation
Have a look at our tutorials and API reference.
Quick start
Building a factorization model for the Movielens 100K dataset is very simple (Colab):
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs
# Ratings data.
ratings = tfds.load('movie_lens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movie_lens/100k-movies', split="train")
# Select the basic features.
ratings = ratings.map(lambda x: {
"movie_id": tf.strings.to_number(x["movie_id"]),
"user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))
# Build a model.
class Model(tfrs.Model):
def __init__(self):
super().__init__()
# Set up user representation.
self.user_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up movie representation.
self.item_model = tf.keras.layers.Embedding(
input_dim=2000, output_dim=64)
# Set up a retrieval task and evaluation metrics over the
# entire dataset of candidates.
self.task = tfrs.tasks.Retrieval(
metrics=tfrs.metrics.FactorizedTopK(
candidates=movies.batch(128).map(self.item_model)
)
)
def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:
user_embeddings = self.user_model(features["user_id"])
movie_embeddings = self.item_model(features["movie_id"])
return self.task(user_embeddings, movie_embeddings)
model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))
# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)
train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)
# Train.
model.fit(train.batch(4096), epochs=5)
# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file tensorflow-recommenders-0.1.3.tar.gz
.
File metadata
- Download URL: tensorflow-recommenders-0.1.3.tar.gz
- Upload date:
- Size: 18.1 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 363539f11c138324bf56c82546a40a9480c465182a20af79262142fdcb16f1b4 |
|
MD5 | 315f0b4024408566030ee94b640552d4 |
|
BLAKE2b-256 | fb2eef571e533cbb17f8f5be18f1529b97de1403ca5708cef126087433f23aa5 |
File details
Details for the file tensorflow_recommenders-0.1.3-py3-none-any.whl
.
File metadata
- Download URL: tensorflow_recommenders-0.1.3-py3-none-any.whl
- Upload date:
- Size: 37.9 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.24.0 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.49.0 CPython/3.6.1
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | e2130aa57c1891d7c201e3f66a11500830f684ea421d077c10e97af11898ebcd |
|
MD5 | 911ae2d4b4d2a54a271d14f1380ea5c6 |
|
BLAKE2b-256 | c91592647acb0fdc574acb34e6d3e2656155423e14ec49b653d780891dd1f2e8 |