Skip to main content

Tensorflow Recommenders, a TensorFlow library for recommender systems.

Project description

TensorFlow Recommenders

TensorFlow Recommenders logo

TensorFlow Recommenders build badge PyPI badge

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

It helps with the full workflow of building a recommender system: data preparation, model formulation, training, evaluation, and deployment.

It's built on Keras and aims to have a gentle learning curve while still giving you the flexibility to build complex models.

Installation

Make sure you have TensorFlow 2.x installed, and install from pip:

pip install tensorflow-recommenders

Documentation

Have a look at our tutorials and API reference.

Quick start

Building a factorization model for the Movielens 100K dataset is very simple (Colab):

from typing import Dict, Text

import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Ratings data.
ratings = tfds.load('movielens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movielens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
    "movie_id": tf.strings.to_number(x["movie_id"]),
    "user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))

# Build a model.
class Model(tfrs.Model):

  def __init__(self):
    super().__init__()

    # Set up user representation.
    self.user_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up movie representation.
    self.item_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up a retrieval task and evaluation metrics over the
    # entire dataset of candidates.
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.item_model)
        )
    )

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

    user_embeddings = self.user_model(features["user_id"])
    movie_embeddings = self.item_model(features["movie_id"])

    return self.task(user_embeddings, movie_embeddings)


model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

# Train.
model.fit(train.batch(4096), epochs=5)

# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow-recommenders-0.3.1.tar.gz (24.4 kB view details)

Uploaded Source

Built Distribution

tensorflow_recommenders-0.3.1-py3-none-any.whl (43.7 kB view details)

Uploaded Python 3

File details

Details for the file tensorflow-recommenders-0.3.1.tar.gz.

File metadata

  • Download URL: tensorflow-recommenders-0.3.1.tar.gz
  • Upload date:
  • Size: 24.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0.post20201221 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.1

File hashes

Hashes for tensorflow-recommenders-0.3.1.tar.gz
Algorithm Hash digest
SHA256 aa6fb97d24e29617401362993eea6eb5f9d4eac039c19a0e867226a06bfb009b
MD5 68695866dcc4981a8ddfad119bc38e9d
BLAKE2b-256 7171ce7eca66a40144f6b756c9af0bc65ff91eda4cc6440f0863cd7ee58d0468

See more details on using hashes here.

File details

Details for the file tensorflow_recommenders-0.3.1-py3-none-any.whl.

File metadata

  • Download URL: tensorflow_recommenders-0.3.1-py3-none-any.whl
  • Upload date:
  • Size: 43.7 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.25.1 setuptools/51.1.0.post20201221 requests-toolbelt/0.9.1 tqdm/4.54.1 CPython/3.6.1

File hashes

Hashes for tensorflow_recommenders-0.3.1-py3-none-any.whl
Algorithm Hash digest
SHA256 479a1221e49588e718f4ff871821b15b386a3b0fc084027a41112ecedfbb99b1
MD5 610e9743463d75966d12c0c0c7b46443
BLAKE2b-256 804f24fac3f0a10e4e0c2ea6e512556842e92a0263cb7dc842b45b0524881c90

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page