Skip to main content

Tensorflow Recommenders, a TensorFlow library for recommender systems.

Project description

TensorFlow Recommenders

TensorFlow Recommenders logo

TensorFlow Recommenders build badge PyPI badge

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

It helps with the full workflow of building a recommender system: data preparation, model formulation, training, evaluation, and deployment.

It's built on Keras and aims to have a gentle learning curve while still giving you the flexibility to build complex models.

Installation

Make sure you have TensorFlow 2.x installed, and install from pip:

pip install tensorflow-recommenders

Documentation

Have a look at our tutorials and API reference.

Quick start

Building a factorization model for the Movielens 100K dataset is very simple (Colab):

from typing import Dict, Text

import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Ratings data.
ratings = tfds.load('movielens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movielens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
    "movie_id": tf.strings.to_number(x["movie_id"]),
    "user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))

# Build a model.
class Model(tfrs.Model):

  def __init__(self):
    super().__init__()

    # Set up user representation.
    self.user_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up movie representation.
    self.item_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up a retrieval task and evaluation metrics over the
    # entire dataset of candidates.
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.item_model)
        )
    )

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

    user_embeddings = self.user_model(features["user_id"])
    movie_embeddings = self.item_model(features["movie_id"])

    return self.task(user_embeddings, movie_embeddings)


model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

# Train.
model.fit(train.batch(4096), epochs=5)

# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow-recommenders-0.6.0.tar.gz (55.1 kB view details)

Uploaded Source

Built Distribution

tensorflow_recommenders-0.6.0-py3-none-any.whl (85.8 kB view details)

Uploaded Python 3

File details

Details for the file tensorflow-recommenders-0.6.0.tar.gz.

File metadata

  • Download URL: tensorflow-recommenders-0.6.0.tar.gz
  • Upload date:
  • Size: 55.1 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.6.1

File hashes

Hashes for tensorflow-recommenders-0.6.0.tar.gz
Algorithm Hash digest
SHA256 2009006d9696ee209ca579122464600e68ec8f4f574fb702f91ef9553648f591
MD5 a0282fef45a119af93f0761ab8cb3afc
BLAKE2b-256 3cbc53beab04781b35c6c3f0bc66320af44906971a86d6616c908bc87899e3bd

See more details on using hashes here.

File details

Details for the file tensorflow_recommenders-0.6.0-py3-none-any.whl.

File metadata

  • Download URL: tensorflow_recommenders-0.6.0-py3-none-any.whl
  • Upload date:
  • Size: 85.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.6.4 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.2 CPython/3.6.1

File hashes

Hashes for tensorflow_recommenders-0.6.0-py3-none-any.whl
Algorithm Hash digest
SHA256 9f2df0692022306d8f001c63c082a85cb9be19432795fa1ce35f347a91e1d7ca
MD5 c07585eeaffc28a89d66a25b9d3ccdd9
BLAKE2b-256 1b1d4e996de5363cfbd1cd6adeab51bca6143af8ef16a8dcc4d7dc1bca3b0c38

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page