Skip to main content

Tensorflow Recommenders, a TensorFlow library for recommender systems.

Project description

TensorFlow Recommenders

TensorFlow Recommenders logo

TensorFlow Recommenders build badge PyPI badge

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

It helps with the full workflow of building a recommender system: data preparation, model formulation, training, evaluation, and deployment.

It's built on Keras and aims to have a gentle learning curve while still giving you the flexibility to build complex models.

Installation

Make sure you have TensorFlow 2.x installed, and install from pip:

pip install tensorflow-recommenders

Documentation

Have a look at our tutorials and API reference.

Quick start

Building a factorization model for the Movielens 100K dataset is very simple (Colab):

from typing import Dict, Text

import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Ratings data.
ratings = tfds.load('movielens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movielens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
    "movie_id": tf.strings.to_number(x["movie_id"]),
    "user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))

# Build a model.
class Model(tfrs.Model):

  def __init__(self):
    super().__init__()

    # Set up user representation.
    self.user_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up movie representation.
    self.item_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up a retrieval task and evaluation metrics over the
    # entire dataset of candidates.
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.item_model)
        )
    )

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

    user_embeddings = self.user_model(features["user_id"])
    movie_embeddings = self.item_model(features["movie_id"])

    return self.task(user_embeddings, movie_embeddings)


model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

# Train.
model.fit(train.batch(4096), epochs=5)

# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow-recommenders-0.7.0.tar.gz (59.4 kB view details)

Uploaded Source

Built Distribution

tensorflow_recommenders-0.7.0-py3-none-any.whl (88.8 kB view details)

Uploaded Python 3

File details

Details for the file tensorflow-recommenders-0.7.0.tar.gz.

File metadata

File hashes

Hashes for tensorflow-recommenders-0.7.0.tar.gz
Algorithm Hash digest
SHA256 0ab70a50ce98d4146059e38d23c3ca145c8dd5b9c5c99d84ec566beea698a5f5
MD5 502d69be757db42681dd13a51ec53687
BLAKE2b-256 b4e084e2305b055d16540c36730d80501bd5d4237d1d15b9125e8147a73b12b2

See more details on using hashes here.

File details

Details for the file tensorflow_recommenders-0.7.0-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorflow_recommenders-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d7d541a0806aa2e975bcf18407cc4dd789ba00c3a84cbb9ab557df4bfa8bc901
MD5 ac35089f5f46e06e1e957efd17641ec5
BLAKE2b-256 e98fa9c6adeca71220b4473f7c29479bcf3ea5e4efb223ef79644187751ee0b2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page