Skip to main content

Tensorflow Recommenders, a TensorFlow library for recommender systems.

Project description

TensorFlow Recommenders

TensorFlow Recommenders logo

TensorFlow Recommenders build badge PyPI badge

TensorFlow Recommenders is a library for building recommender system models using TensorFlow.

It helps with the full workflow of building a recommender system: data preparation, model formulation, training, evaluation, and deployment.

It's built on Keras and aims to have a gentle learning curve while still giving you the flexibility to build complex models.

Installation

Make sure you have TensorFlow 2.x installed, and install from pip:

pip install tensorflow-recommenders

Documentation

Have a look at our tutorials and API reference.

Quick start

Building a factorization model for the Movielens 100K dataset is very simple (Colab):

from typing import Dict, Text

import tensorflow as tf
import tensorflow_datasets as tfds
import tensorflow_recommenders as tfrs

# Ratings data.
ratings = tfds.load('movielens/100k-ratings', split="train")
# Features of all the available movies.
movies = tfds.load('movielens/100k-movies', split="train")

# Select the basic features.
ratings = ratings.map(lambda x: {
    "movie_id": tf.strings.to_number(x["movie_id"]),
    "user_id": tf.strings.to_number(x["user_id"])
})
movies = movies.map(lambda x: tf.strings.to_number(x["movie_id"]))

# Build a model.
class Model(tfrs.Model):

  def __init__(self):
    super().__init__()

    # Set up user representation.
    self.user_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up movie representation.
    self.item_model = tf.keras.layers.Embedding(
        input_dim=2000, output_dim=64)
    # Set up a retrieval task and evaluation metrics over the
    # entire dataset of candidates.
    self.task = tfrs.tasks.Retrieval(
        metrics=tfrs.metrics.FactorizedTopK(
            candidates=movies.batch(128).map(self.item_model)
        )
    )

  def compute_loss(self, features: Dict[Text, tf.Tensor], training=False) -> tf.Tensor:

    user_embeddings = self.user_model(features["user_id"])
    movie_embeddings = self.item_model(features["movie_id"])

    return self.task(user_embeddings, movie_embeddings)


model = Model()
model.compile(optimizer=tf.keras.optimizers.Adagrad(0.5))

# Randomly shuffle data and split between train and test.
tf.random.set_seed(42)
shuffled = ratings.shuffle(100_000, seed=42, reshuffle_each_iteration=False)

train = shuffled.take(80_000)
test = shuffled.skip(80_000).take(20_000)

# Train.
model.fit(train.batch(4096), epochs=5)

# Evaluate.
model.evaluate(test.batch(4096), return_dict=True)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow-recommenders-0.7.2.tar.gz (59.8 kB view details)

Uploaded Source

Built Distribution

tensorflow_recommenders-0.7.2-py3-none-any.whl (89.3 kB view details)

Uploaded Python 3

File details

Details for the file tensorflow-recommenders-0.7.2.tar.gz.

File metadata

File hashes

Hashes for tensorflow-recommenders-0.7.2.tar.gz
Algorithm Hash digest
SHA256 67904def15ef9ff1ba5b9ca96ca32845ec54ec41b5be24e80883ad2bea8abc4b
MD5 f796289798fa0c0527c6b2396df918a3
BLAKE2b-256 76bc44a89ab491973736eba5fb667c59c46437b483c465b9bcde3dbcaed500e8

See more details on using hashes here.

File details

Details for the file tensorflow_recommenders-0.7.2-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorflow_recommenders-0.7.2-py3-none-any.whl
Algorithm Hash digest
SHA256 3f7cd18e63ade94d5c2c9e5ec35243f41905f713966dd2c9d76a14c48fd7e746
MD5 d90072ac333cddc8dd2c0ecdb3ffd4c8
BLAKE2b-256 fb3a5f0c0c04fc69a95231829f4cc9d93f2109b5a2e0f84f5c15ff4a828a19a7

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page