Skip to main content

No project description provided

Project description

img img img img img img img img

img

TensorFlow time-series Dataset

  1. About The Project
  2. Installation
  3. Usage
    1. Example Data
    2. Single-Step Prediction
    3. Multi-Step Prediction
    4. Preprocessing: Add Metadata features
  4. Contributing
  5. License
  6. Contact
  7. Acknowledgments

About The Project

This python package should help you to create TensorFlow datasets for time-series data.

Installation

This package is available on PyPI. You install it and all of its dependencies using pip:

pip install tensorflow_time_series_dataset

Usage

Example Data

Suppose you have a dataset in the following form:

import numpy as np
import pandas as pd

# make things determeinisteic
np.random.seed(1)

columns=['x1', 'x2', 'x3']
periods=48 * 14
test_df=pd.DataFrame(
    index=pd.date_range(
        start='1/1/1992',
        periods=periods,
        freq='30min'
    ),
    data=np.stack(
        [
            np.random.normal(0,0.5,periods),
            np.random.normal(1,0.5,periods),
            np.random.normal(2,0.5,periods)
        ],
        axis=1
    ),
    columns=columns
)
test_df.head()

                           x1        x2        x3
1992-01-01 00:00:00  0.812173  1.205133  1.578044
1992-01-01 00:30:00 -0.305878  1.429935  1.413295
1992-01-01 01:00:00 -0.264086  0.550658  1.602187
1992-01-01 01:30:00 -0.536484  1.159828  1.644974
1992-01-01 02:00:00  0.432704  1.159077  2.005718

Single-Step Prediction

The factory class WindowedTimeSeriesDatasetFactory is used to create a TensorFlow dataset from pandas dataframes, or other data sources as we will see later. We will use it now to create a dataset with 48 historic time-steps as the input to predict a single time-step in the future.

from tensorflow_time_series_dataset.factory import WindowedTimeSeriesDatasetFactory as Factory

factory_kwds=dict(
    history_size=48,
    prediction_size=1,
    history_columns=['x1', 'x2', 'x3'],
    prediction_columns=['x3'],
    batch_size=4,
    drop_remainder=True,
)
factory=Factory(**factory_kwds)
ds1=factory(test_df)
ds1

This returns the following TensorFlow Dataset:

<_PrefetchDataset element_spec=(TensorSpec(shape=(4, 48, 3), dtype=tf.float32, name=None), TensorSpec(shape=(4, 1, 1), dtype=tf.float32, name=None))>

We can plot the result with the utility function plot_path:

from tensorflow_time_series_dataset.utils.visualisation import plot_patch
fig=plot_patch(
    ds1,
    figsize=(8,4),
    **factory_kwds
)

fname='.images/example1.svg'
fig.savefig(fname)
fname

img

Multi-Step Prediction

Lets now increase the prediction size to 6 half-hour time-steps.

factory_kwds.update(dict(
    prediction_size=6
))
factory=Factory(**factory_kwds)
ds2=factory(test_df)
ds2

This returns the following TensorFlow Dataset:

<_PrefetchDataset element_spec=(TensorSpec(shape=(4, 48, 3), dtype=tf.float32, name=None), TensorSpec(shape=(4, 6, 1), dtype=tf.float32, name=None))>

Again, lets plot the results to see what changed:

fig=plot_patch(
    ds2,
    figsize=(8,4),
    **factory_kwds
)

fname='.images/example2.svg'
fig.savefig(fname)
fname

img

Preprocessing: Add Metadata features

Preprocessors can be used to transform the data before it is fed into the model. A Preprocessor can be any python callable. In this case we will be using the a class called CyclicalFeatureEncoder to encode our one-dimensional cyclical features like the time or weekday to two-dimensional coordinates using a sine and cosine transformation as suggested in this blogpost.

import itertools
from tensorflow_time_series_dataset.preprocessors import CyclicalFeatureEncoder
encs = {
    "weekday": dict(cycl_max=6),
    "dayofyear": dict(cycl_max=366, cycl_min=1),
    "month": dict(cycl_max=12, cycl_min=1),
    "time": dict(
        cycl_max=24 * 60 - 1,
        cycl_getter=lambda df, k: df.index.hour * 60 + df.index.minute,
    ),
}
factory_kwds.update(dict(
    meta_columns=list(itertools.chain(*[[c+'_sin', c+'_cos'] for c in encs.keys()]))
))
factory=Factory(**factory_kwds)
for name, kwds in encs.items():
    factory.add_preprocessor(CyclicalFeatureEncoder(name, **kwds))
ds3=factory(test_df)
ds3

This returns the following TensorFlow Dataset:

<_PrefetchDataset element_spec=((TensorSpec(shape=(4, 48, 3), dtype=tf.float32, name=None), TensorSpec(shape=(4, 1, 8), dtype=tf.float32, name=None)), TensorSpec(shape=(4, 6, 1), dtype=tf.float32, name=None))>

Again, lets plot the results to see what changed:

fig=plot_patch(
    ds3,
    figsize=(8,4),
    **factory_kwds
)

fname='.images/example3.svg'
fig.savefig(fname)
fname

img

Contributing

Any Contributions are greatly appreciated! If you have a question, an issue or would like to contribute, please read our contributing guidelines.

License

Distributed under the Apache License 2.0

Contact

Marcel Arpogaus - marcel.arpogaus@gmail.com

Project Link: https://github.com/MArpogaus/tensorflow_time_series_dataset

Acknowledgments

Parts of this work have been funded by the Federal Ministry for the Environment, Nature Conservation and Nuclear Safety due to a decision of the German Federal Parliament (AI4Grids: 67KI2012A).

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorflow_time_series_dataset-0.1.1.tar.gz (20.5 kB view details)

Uploaded Source

Built Distribution

File details

Details for the file tensorflow_time_series_dataset-0.1.1.tar.gz.

File metadata

File hashes

Hashes for tensorflow_time_series_dataset-0.1.1.tar.gz
Algorithm Hash digest
SHA256 8c3b274d93f43b4c7d13dedce74397efa931ae484c344a5e272cae18534d498a
MD5 f2205e0ba8cc1955888e6535bb29d7dc
BLAKE2b-256 719b021c19c1f25695fc97ba6d164d98e0ea7064925b57c0c1616b66d986f5ca

See more details on using hashes here.

File details

Details for the file tensorflow_time_series_dataset-0.1.1-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorflow_time_series_dataset-0.1.1-py3-none-any.whl
Algorithm Hash digest
SHA256 b319dabccb90f3851eb492aed317d371643ab903dafb620b7e344a85ef5a86bf
MD5 8f5833e2b9cfdd4e5759f7e3f64c89b1
BLAKE2b-256 ca7ab1b209c0b163361e3054088e068ef751b5f60bc6e0483dce99c330092e79

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page