Skip to main content

TensorFlow is an open source machine learning framework for everyone.

Project description

Python PyPI

TensorFlow is an open source software library for high performance numerical computation. Its flexible architecture allows easy deployment of computation across a variety of platforms (CPUs, GPUs, TPUs), and from desktops to clusters of servers to mobile and edge devices.

Originally developed by researchers and engineers from the Google Brain team within Google's AI organization, it comes with strong support for machine learning and deep learning and the flexible numerical computation core is used across many other scientific domains. TensorFlow is licensed under Apache 2.0.

Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distributions

tensorflow-2.18.0rc1-cp312-cp312-win_amd64.whl (7.6 kB view details)

Uploaded CPython 3.12 Windows x86-64

tensorflow-2.18.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (615.5 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ x86-64

tensorflow-2.18.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (231.9 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.17+ ARM64

tensorflow-2.18.0rc1-cp312-cp312-macosx_12_0_arm64.whl (239.6 MB view details)

Uploaded CPython 3.12 macOS 12.0+ ARM64

tensorflow-2.18.0rc1-cp311-cp311-win_amd64.whl (7.6 kB view details)

Uploaded CPython 3.11 Windows x86-64

tensorflow-2.18.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (615.4 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tensorflow-2.18.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (231.9 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tensorflow-2.18.0rc1-cp311-cp311-macosx_12_0_arm64.whl (239.5 MB view details)

Uploaded CPython 3.11 macOS 12.0+ ARM64

tensorflow-2.18.0rc1-cp310-cp310-win_amd64.whl (7.6 kB view details)

Uploaded CPython 3.10 Windows x86-64

tensorflow-2.18.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (615.3 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tensorflow-2.18.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (231.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tensorflow-2.18.0rc1-cp310-cp310-macosx_12_0_arm64.whl (239.4 MB view details)

Uploaded CPython 3.10 macOS 12.0+ ARM64

tensorflow-2.18.0rc1-cp39-cp39-win_amd64.whl (7.6 kB view details)

Uploaded CPython 3.9 Windows x86-64

tensorflow-2.18.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (615.3 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tensorflow-2.18.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (231.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tensorflow-2.18.0rc1-cp39-cp39-macosx_12_0_arm64.whl (239.4 MB view details)

Uploaded CPython 3.9 macOS 12.0+ ARM64

File details

Details for the file tensorflow-2.18.0rc1-cp312-cp312-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 f8b5d6dec03a66be2fb79c6ab3e0e356e12f0f802d45a6ed1a6df72ee23498c2
MD5 0c79b566f1fb1309f86d0b183297d7f7
BLAKE2b-256 91e80e03c013be239794a011b5573e498bb825811a6b356106e6f3d1ab8f3e2d

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp312-cp312-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0e3060f2b783295296f8b5d30ce0151d4b3c5430c4a6e28b4d54e04daec2d8ac
MD5 cd21f99c115f2f57061f0566b70d15d6
BLAKE2b-256 347d837fd09999029bb425e7b3197ad069b52280731e3390f43993f7f7c80d9c

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp312-cp312-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 8173c26665f3ebc74f7f17746960a877cafb636e81582a1b944a768010d0b14a
MD5 e8569f8c4c69f7324bf7917d27ee9c51
BLAKE2b-256 85fbb069409e972a73ce0ffe9f1c62747d85b30dbe7fc03db8ef2f3157fbad03

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp312-cp312-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp312-cp312-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 fd5d3e7d19cdd2742e7c3903044c1de5cf3d1e9771fb37d03e23603d7538f49d
MD5 9e8cfc41219350e51e32c1331770f434
BLAKE2b-256 b557ef8f39e8a247cf9389cbb2113c9df7e93cd69e5baf2184a45b1392d7ebde

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp311-cp311-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 1a9da66c9a73949a8cd13fc5a5125bf51d61e994e44f9d6ae3e00926a103a193
MD5 39f6cdcc9cea6c0ff54fcb27fe6e425f
BLAKE2b-256 5da9811d8ee061c1331b5127697a7e33ee17fb5c71bedd7fa36ca8fd1d81f55a

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 3505f168a1de0ba79d48fa0af77c831936a84c689e2cb9514cc2b5f8f4ca5b14
MD5 2ac3d53dcb11c6f231062fa2613622d3
BLAKE2b-256 7a433e8bbcf8f94d0f2f077a18874dacdcb8b8a401a987ff116ef6593edd7a3d

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 73f8b1dec4bb44ed4ed7b3e6a48e78075920b90fb35de224b2fa60c5271df9d9
MD5 21105c2ace35eebb559d0cfafd3d2d10
BLAKE2b-256 a9246711f00d0d6f11c71e1adc1267890aa50efb193cafe4cb9ee5ce932281da

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp311-cp311-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp311-cp311-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 c97fbcb1a499ea3daa10d129e7886797ba7be5033535b6c98773237acf6f97ef
MD5 025d709b0aabea11286afdd379dfa178
BLAKE2b-256 ce0f5a7877fa240fd3edfbd96552e30a099d08b15065664701427d8641d0eb65

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp310-cp310-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 319a215c99a7c1a3b5a73533e58c13e8051a3c1d41e23bcd0b85520ef00cd0e5
MD5 916a9851a5439718b5a948652b8b13e3
BLAKE2b-256 ddf9ef70ff306f9b89927d0179d05b9d2f2ee0687dbcfef9498b7d8e823784dc

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 46b77d40f6ba22772608b38482929b800a7e11e92df675616fd38e9073d269b8
MD5 d003953fc2bc64d9a2c3b0b97b7aea12
BLAKE2b-256 724882bcc91504508d95db751b4897a1fa7155e87d620efe42d14d9cd863179d

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 600c771ce0feec6cd8803510511862d6bef7e2705308695fb1ca6c8334013b8b
MD5 b10dcc5d722e2c7b38db8325ca8ba6bc
BLAKE2b-256 e400b11a7fc675e5f3dbe5acbaa04c09f2c8082690db6670492b9a8337fa72bb

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp310-cp310-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp310-cp310-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 a47a7dd8a70d426a189a1e7f44e7f66825f25a76eacb30915954ec138c9d7bfd
MD5 fabb0b37c0a81d4da00598f7028605d8
BLAKE2b-256 32c7d105fb8f7a32185b1d7bf56d5597a17dcc42bd531eab5a15814f2425ee30

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp39-cp39-win_amd64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 e447449e4ae1585ffaa3619b6be2fa1e279d9cf9c20e1445457b65d6ed374b6d
MD5 7d2863201fb5fa2136c4e2adb0948b7c
BLAKE2b-256 4eb169ce20c367a5b073902c5491994103c8a6fc9ba2d1d12ca4f935f6e7a310

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 129a180e897dd4892911f834fd3248a92822cf349b1b031176c8665127fe9956
MD5 d7d5fe6f86526045deef87fc949ee2bf
BLAKE2b-256 040e1994755ba634dee989d674c3002f5b1338abca56663f9570b6deeef4af47

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 d668a7a8dd5eb7141092a2e615e5153f2a50df6ce7f4ed55da48c64c071cc8f1
MD5 7458930f4ad2efe9e31be65e585ec91d
BLAKE2b-256 8ddc53a55ff32c4f4a1c0fc80b32bec5a4757c9470da634eb6c60b60096eb6ce

See more details on using hashes here.

File details

Details for the file tensorflow-2.18.0rc1-cp39-cp39-macosx_12_0_arm64.whl.

File metadata

File hashes

Hashes for tensorflow-2.18.0rc1-cp39-cp39-macosx_12_0_arm64.whl
Algorithm Hash digest
SHA256 063509dd1fa920038e5626ed6724ea89494e9dd240e29f85aaaa725cd8496fd1
MD5 7e3c15e3c6bfd7c8f03758a45b5eaf94
BLAKE2b-256 b43f630062ac9cd5ad2c61ae1b267f592672df009ad5294a7e714b908211437e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page