Skip to main content

TensorFlow wrapper for deep neural text generation on character or word level with RNNs / LSTMs

Project description


Generate Shakespeare poems with 4 lines of code.

<a href="" target="_blank">[![showcase
of the package]]</a>


`tensorlm` is written in / for Python 3.

pip3 install tensorflow>=1.1
pip3 install tensorlm

Basic Usage

Use the `CharLM` or `WordLM` class:

``` {.python}
import tensorflow as tf
from tensorlm import CharLM

with tf.Session() as session:

# Create a new model. You can also use WordLM
model = CharLM(session, "datasets/sherlock/train.txt", max_vocab_size=96,
neurons_per_layer=100, num_layers=3, num_timesteps=15)

# Train it
model.train(session, max_epochs=5, max_steps=500, print_logs=True)

# Let it generate a text
generated = model.sample(session, "The ", num_steps=100)
print("The " + generated)

This should output something like:

The eee ee ee ee e e ee ee e e e e e e e e e e

Command Line Usage

`python3 -m tensorlm.cli --train=True --level=char --train_text_path=datasets/sherlock/train.txt --max_vocab_size=96 --neurons_per_layer=100 --num_layers=3 --batch_size=10 --num_timesteps=160 --save_dir=out/model --max_epochs=300 --save_interval_hours=0.5`

`python3 -m tensorlm.cli --sample=True --level=char --neurons_per_layer=400 --num_layers=3 --num_timesteps=160 --save_dir=out/model`

`python3 -m tensorlm.cli --evaluate=True --level=char --evaluate_text_path=datasets/sherlock/valid.txt --neurons_per_layer=400 --num_layers=3 --batch_size=10 --num_timesteps=160 --save_dir=out/model`

See `python3 -m tensorlm.cli --help` for all options.

Advanced Usage

### Custom Input Data

The inputs and targets don’t have to be text. `GeneratingLSTM` only
expects token ids, so you can use any data type for the sequences, as
long as you can encode the data to integer ids.

``` {.python}
# We use integer ids from 0 to 19, so the vocab size is 20. The range of ids must always start
# at zero.
batch_inputs = np.array([[1, 2, 3, 4], [15, 16, 17, 18]]) # 2 batches, 4 time steps each
batch_targets = np.array([[2, 3, 4, 5], [16, 17, 18, 19]])

# Create the model in a TensorFlow graph
model = GeneratingLSTM(vocab_size=20, neurons_per_layer=10, num_layers=2, max_batch_size=2)

# Initialize all defined TF Variables

for _ in range(5000):
model.train_step(session, batch_inputs, batch_targets)

sampled = model.sample_ids(session, [15], num_steps=3)
print("Sampled: " + str(sampled))

This should output something like:

Sampled: [16, 18, 19]

### Custom Training, Dropout etc.

Use the `GeneratingLSTM` class directly. This class is agnostic to the
dataset type. It expects integer ids and returns integer ids.

import tensorflow

[showcase of the package]:
[![showcase of the package]]:

Project details

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorlm-0.3.tar.gz (21.8 kB view hashes)

Uploaded Source

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page