Skip to main content

Tensor learning in Python.

Project description

.. raw:: html

<p align="center"><img width="35%" src="http://tensorly.org/stable/_static/TensorLy_logo.png" /></p>

<p align="center">
<a href="https://badge.fury.io/py/tensorly" target=blank>
<img src="https://badge.fury.io/py/tensorly.svg"
</a>
<a href="https://anaconda.org/tensorly/tensorly" target=blank>
<img src="https://anaconda.org/tensorly/tensorly/badges/version.svg"
</a>
<a href="https://travis-ci.org/tensorly/tensorly" target=blank>
<img src="https://travis-ci.org/tensorly/tensorly.svg?branch=master"
</a>
<a href="https://coveralls.io/github/tensorly/tensorly?branch=master" target=blank>
<img src="https://coveralls.io/repos/github/tensorly/tensorly/badge.svg?branch=master"
</a>
<a href="https://gitter.im/tensorly/tensorly?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge" target=blank>
<img src="https://badges.gitter.im/tensorly/tensorly.svg"
</a>
</p>

\

========
TensorLy
========


TensorLy is a Python library that aims at making tensor learning simple and accessible. It allows to easily perform tensor decomposition, tensor learning and tensor algebra. Its backend system allows to seamlessly perform computation with NumPy, MXNet, PyTorch, TensorFlow or CuPy, and run methods at scale on CPU or GPU.

- **Website:** http://tensorly.org
- **Source-code:** https://github.com/tensorly/tensorly
- **Jupyter Notebooks:** https://github.com/JeanKossaifi/tensorly-notebooks

----------------------------

Installing TensorLy
===================

The only pre-requisite is to have **Python 3** installed. The easiest way is via the `Anaconda distribution <https://www.anaconda.com/download/>`_.

+-------------------------------------------+---------------------------------------------------+
|     **With pip** (recommended) |         **With conda** |
+-------------------------------------------+---------------------------------------------------+
| | |
| .. code:: | .. code:: |
| | |
| pip install -U tensorly | conda install -c tensorly tensorly |
| | |
| | |
+-------------------------------------------+---------------------------------------------------+
| **Development (from git)** |
+-------------------------------------------+---------------------------------------------------+
| |
| .. code:: |
| |
| # clone the repository |
| git clone https://github.com/tensorly/tensorly |
| cd tensorly |
| # Install in editable mode with `-e` or, equivalently, `--editable` |
| pip install -e . |
| |
+-----------------------------------------------------------------------------------------------+

**Note:** TensorLy depends on NumPy by default. If you want to use the MXNet or PyTorch backends, you will need to install these packages separately.

For detailed instruction, please see the `documentation <http://tensorly.org/dev/installation.html>`_.

--------------------------

Running the tests
=================

Testing and documentation are an essential part of this package and all functions come with uni-tests and documentation.

The tests are ran using the `pytest` package (though you can also use `nose`).
First install `pytest`::

pip install pytest

Then to run the test, simply run, in the terminal:

.. code::

pytest -v tensorly

Alternatively, you can specify for which backend you wish to run the tests:

.. code::

TENSORLY_BACKEND='numpy' pytest -v tensorly

------------------

Quickstart
==========

Create a small third order tensor of size 3 x 4 x 2 and perform simple operations on it:

.. code:: python

import tensorly as tl
import numpy as np


tensor = tl.tensor(np.arange(24).reshape((3, 4, 2)))
unfolded = tl.unfold(tensor, mode=0)
tl.fold(unfolded, mode=0, shape=tensor.shape)


Applying tensor decomposition is easy:

.. code:: python

from tensorly.decomposition import tucker
# Apply Tucker decomposition
core, factors = tucker(tensor, rank=[2, 2, 2])
# Reconstruct the full tensor from the decomposed form
tl.tucker_to_tensor(core, factors)

Changing the backend to perform computation on GPU for instance. Note that using MXNet, PyTorch, TensorFlow or CuPy requires to have installed them first. For instance, after setting the backend to PyTorch, all the computation is done by PyTorch, and tensors can be created on GPU:

.. code:: python

tl.set_backend('pytorch') # Or 'mxnet', 'numpy', 'tensorflow' or 'cupy'

import torch
tensor = tl.tensor(np.arange(24).reshape((3, 4, 2)), dtype=torch.cuda.FloatTensor)
type(tensor) # torch.cuda.FloatTensor

For more information on getting started, checkout the `user-guide <http://tensorly.org/dev/user_guide/index.html>`_ and for a detailed reference of the functions and their documentation, refer to
the `API <http://tensorly.org/dev/modules/api.html>`_

If you see a bug, open an `issue <https://github.com/tensorly/tensorly/issues>`_, or better yet, a `pull-request <https://github.com/tensorly/tensorly/pulls>`_!

-------------


Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

tensorly-0.4.0-py3-none-any.whl (65.2 kB view details)

Uploaded Python 3

File details

Details for the file tensorly-0.4.0-py3-none-any.whl.

File metadata

File hashes

Hashes for tensorly-0.4.0-py3-none-any.whl
Algorithm Hash digest
SHA256 5bfbc7996ecd0f9a5e46343c49b9aafc7758d769939335e4974daec7bdcc9be7
MD5 4660205d47bbf0dd8da66684013a1a81
BLAKE2b-256 70d156c4a395bb43acfb936cf16345a51a815df602e3d6188ed63503a665716a

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page