Tensor learning in Python.
Project description
.. raw:: html
<p align="center"><img width="35%" src="http://tensorly.org/stable/_static/TensorLy_logo.png" /></p>
<p align="center">
<a href="https://badge.fury.io/py/tensorly" target=blank>
<img src="https://badge.fury.io/py/tensorly.svg"
</a>
<a href="https://anaconda.org/tensorly/tensorly" target=blank>
<img src="https://anaconda.org/tensorly/tensorly/badges/version.svg"
</a>
<a href="https://travis-ci.org/tensorly/tensorly" target=blank>
<img src="https://travis-ci.org/tensorly/tensorly.svg?branch=master"
</a>
<a href="https://coveralls.io/github/tensorly/tensorly?branch=master" target=blank>
<img src="https://coveralls.io/repos/github/tensorly/tensorly/badge.svg?branch=master"
</a>
<a href="https://gitter.im/tensorly/tensorly?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge" target=blank>
<img src="https://badges.gitter.im/tensorly/tensorly.svg"
</a>
</p>
\
========
TensorLy
========
TensorLy is a Python library that aims at making tensor learning simple and accessible. It allows to easily perform tensor decomposition, tensor learning and tensor algebra. Its backend system allows to seamlessly perform computation with NumPy, MXNet, PyTorch, TensorFlow or CuPy, and run methods at scale on CPU or GPU.
- **Website:** http://tensorly.org
- **Source-code:** https://github.com/tensorly/tensorly
- **Jupyter Notebooks:** https://github.com/JeanKossaifi/tensorly-notebooks
----------------------------
Installing TensorLy
===================
The only pre-requisite is to have **Python 3** installed. The easiest way is via the `Anaconda distribution <https://www.anaconda.com/download/>`_.
+-------------------------------------------+---------------------------------------------------+
| **With pip** (recommended) | **With conda** |
+-------------------------------------------+---------------------------------------------------+
| | |
| .. code:: | .. code:: |
| | |
| pip install -U tensorly | conda install -c tensorly tensorly |
| | |
| | |
+-------------------------------------------+---------------------------------------------------+
| **Development (from git)** |
+-------------------------------------------+---------------------------------------------------+
| |
| .. code:: |
| |
| # clone the repository |
| git clone https://github.com/tensorly/tensorly |
| cd tensorly |
| # Install in editable mode with `-e` or, equivalently, `--editable` |
| pip install -e . |
| |
+-----------------------------------------------------------------------------------------------+
**Note:** TensorLy depends on NumPy by default. If you want to use the MXNet or PyTorch backends, you will need to install these packages separately.
For detailed instruction, please see the `documentation <http://tensorly.org/dev/installation.html>`_.
--------------------------
Running the tests
=================
Testing and documentation are an essential part of this package and all functions come with uni-tests and documentation.
The tests are ran using the `pytest` package (though you can also use `nose`).
First install `pytest`::
pip install pytest
Then to run the test, simply run, in the terminal:
.. code::
pytest -v tensorly
Alternatively, you can specify for which backend you wish to run the tests:
.. code::
TENSORLY_BACKEND='numpy' pytest -v tensorly
------------------
Quickstart
==========
Create a small third order tensor of size 3 x 4 x 2 and perform simple operations on it:
.. code:: python
import tensorly as tl
import numpy as np
tensor = tl.tensor(np.arange(24).reshape((3, 4, 2)))
unfolded = tl.unfold(tensor, mode=0)
tl.fold(unfolded, mode=0, shape=tensor.shape)
Applying tensor decomposition is easy:
.. code:: python
from tensorly.decomposition import tucker
# Apply Tucker decomposition
core, factors = tucker(tensor, rank=[2, 2, 2])
# Reconstruct the full tensor from the decomposed form
tl.tucker_to_tensor(core, factors)
Changing the backend to perform computation on GPU for instance. Note that using MXNet, PyTorch, TensorFlow or CuPy requires to have installed them first. For instance, after setting the backend to PyTorch, all the computation is done by PyTorch, and tensors can be created on GPU:
.. code:: python
tl.set_backend('pytorch') # Or 'mxnet', 'numpy', 'tensorflow' or 'cupy'
import torch
tensor = tl.tensor(np.arange(24).reshape((3, 4, 2)), dtype=torch.cuda.FloatTensor)
type(tensor) # torch.cuda.FloatTensor
For more information on getting started, checkout the `user-guide <http://tensorly.org/dev/user_guide/index.html>`_ and for a detailed reference of the functions and their documentation, refer to
the `API <http://tensorly.org/dev/modules/api.html>`_
If you see a bug, open an `issue <https://github.com/tensorly/tensorly/issues>`_, or better yet, a `pull-request <https://github.com/tensorly/tensorly/pulls>`_!
-------------
<p align="center"><img width="35%" src="http://tensorly.org/stable/_static/TensorLy_logo.png" /></p>
<p align="center">
<a href="https://badge.fury.io/py/tensorly" target=blank>
<img src="https://badge.fury.io/py/tensorly.svg"
</a>
<a href="https://anaconda.org/tensorly/tensorly" target=blank>
<img src="https://anaconda.org/tensorly/tensorly/badges/version.svg"
</a>
<a href="https://travis-ci.org/tensorly/tensorly" target=blank>
<img src="https://travis-ci.org/tensorly/tensorly.svg?branch=master"
</a>
<a href="https://coveralls.io/github/tensorly/tensorly?branch=master" target=blank>
<img src="https://coveralls.io/repos/github/tensorly/tensorly/badge.svg?branch=master"
</a>
<a href="https://gitter.im/tensorly/tensorly?utm_source=badge&utm_medium=badge&utm_campaign=pr-badge" target=blank>
<img src="https://badges.gitter.im/tensorly/tensorly.svg"
</a>
</p>
\
========
TensorLy
========
TensorLy is a Python library that aims at making tensor learning simple and accessible. It allows to easily perform tensor decomposition, tensor learning and tensor algebra. Its backend system allows to seamlessly perform computation with NumPy, MXNet, PyTorch, TensorFlow or CuPy, and run methods at scale on CPU or GPU.
- **Website:** http://tensorly.org
- **Source-code:** https://github.com/tensorly/tensorly
- **Jupyter Notebooks:** https://github.com/JeanKossaifi/tensorly-notebooks
----------------------------
Installing TensorLy
===================
The only pre-requisite is to have **Python 3** installed. The easiest way is via the `Anaconda distribution <https://www.anaconda.com/download/>`_.
+-------------------------------------------+---------------------------------------------------+
| **With pip** (recommended) | **With conda** |
+-------------------------------------------+---------------------------------------------------+
| | |
| .. code:: | .. code:: |
| | |
| pip install -U tensorly | conda install -c tensorly tensorly |
| | |
| | |
+-------------------------------------------+---------------------------------------------------+
| **Development (from git)** |
+-------------------------------------------+---------------------------------------------------+
| |
| .. code:: |
| |
| # clone the repository |
| git clone https://github.com/tensorly/tensorly |
| cd tensorly |
| # Install in editable mode with `-e` or, equivalently, `--editable` |
| pip install -e . |
| |
+-----------------------------------------------------------------------------------------------+
**Note:** TensorLy depends on NumPy by default. If you want to use the MXNet or PyTorch backends, you will need to install these packages separately.
For detailed instruction, please see the `documentation <http://tensorly.org/dev/installation.html>`_.
--------------------------
Running the tests
=================
Testing and documentation are an essential part of this package and all functions come with uni-tests and documentation.
The tests are ran using the `pytest` package (though you can also use `nose`).
First install `pytest`::
pip install pytest
Then to run the test, simply run, in the terminal:
.. code::
pytest -v tensorly
Alternatively, you can specify for which backend you wish to run the tests:
.. code::
TENSORLY_BACKEND='numpy' pytest -v tensorly
------------------
Quickstart
==========
Create a small third order tensor of size 3 x 4 x 2 and perform simple operations on it:
.. code:: python
import tensorly as tl
import numpy as np
tensor = tl.tensor(np.arange(24).reshape((3, 4, 2)))
unfolded = tl.unfold(tensor, mode=0)
tl.fold(unfolded, mode=0, shape=tensor.shape)
Applying tensor decomposition is easy:
.. code:: python
from tensorly.decomposition import tucker
# Apply Tucker decomposition
core, factors = tucker(tensor, rank=[2, 2, 2])
# Reconstruct the full tensor from the decomposed form
tl.tucker_to_tensor(core, factors)
Changing the backend to perform computation on GPU for instance. Note that using MXNet, PyTorch, TensorFlow or CuPy requires to have installed them first. For instance, after setting the backend to PyTorch, all the computation is done by PyTorch, and tensors can be created on GPU:
.. code:: python
tl.set_backend('pytorch') # Or 'mxnet', 'numpy', 'tensorflow' or 'cupy'
import torch
tensor = tl.tensor(np.arange(24).reshape((3, 4, 2)), dtype=torch.cuda.FloatTensor)
type(tensor) # torch.cuda.FloatTensor
For more information on getting started, checkout the `user-guide <http://tensorly.org/dev/user_guide/index.html>`_ and for a detailed reference of the functions and their documentation, refer to
the `API <http://tensorly.org/dev/modules/api.html>`_
If you see a bug, open an `issue <https://github.com/tensorly/tensorly/issues>`_, or better yet, a `pull-request <https://github.com/tensorly/tensorly/pulls>`_!
-------------
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
No source distribution files available for this release.See tutorial on generating distribution archives.
Built Distribution
tensorly-0.4.0-py3-none-any.whl
(65.2 kB
view details)
File details
Details for the file tensorly-0.4.0-py3-none-any.whl
.
File metadata
- Download URL: tensorly-0.4.0-py3-none-any.whl
- Upload date:
- Size: 65.2 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 5bfbc7996ecd0f9a5e46343c49b9aafc7758d769939335e4974daec7bdcc9be7 |
|
MD5 | 4660205d47bbf0dd8da66684013a1a81 |
|
BLAKE2b-256 | 70d156c4a395bb43acfb936cf16345a51a815df602e3d6188ed63503a665716a |