Skip to main content

Tensor Neural Engine Kompanion. An util library based on PyTorch and PyTorch Lightning.

Project description

TensorNeko

Tensor Neural Engine Kompanion. An util library based on PyTorch and PyTorch Lightning.

Install

pip install tensorneko

Neko Layers and Modules

Build an MLP with linear layers. The activation and normalization will be placed in the hidden layers.

784 -> 1024 -> 512 -> 10

import tensorneko as neko
import torch.nn

mlp = neko.module.MLP(
    neurons=[784, 1024, 512, 10],
    build_activation=torch.nn.ReLU,
    build_normalization=[
        lambda: torch.nn.BatchNorm1d(1024),
        lambda: torch.nn.BatchNorm1d(512)
    ],
    dropout_rate=0.5
)

Build a Conv2d with activation and normalization.

import tensorneko as neko
import torch.nn

conv2d = neko.layer.Conv2d(
    in_channels=256,
    out_channels=1024,
    kernel_size=(3, 3),
    padding=(1, 1),
    build_activation=torch.nn.ReLU,
    build_normalization=lambda: torch.nn.BatchNorm2d(256),
    normalization_after_activation=False
)

All modules and layers

layers:

  • Concatenate
  • Conv2d
  • Linear
  • Log
  • PatchEmbedding2d
  • PositionalEmbedding
  • Reshape

modules:

  • DenseBlock
  • InceptionModule
  • MLP
  • ResidualBlock and ResidualModule
  • AttentionModule, TransformerEncoderBlock and TransformerEncoder

Neko modules

All tensorneko.layer and tensorneko.module are NekoModule. They can be used in fn.py pipe operation.

from tensorneko.layer import Linear
from torch.nn import ReLU
import torch

linear0 = Linear(16, 128, build_activation=ReLU)
linear1 = Linear(128, 1)

f = linear0 >> linear1
print(f(torch.rand(16)).shape)
# torch.Size([1])

Neko IO

Easily load and save different modal data.

import tensorneko as neko
from tensorneko.io.text.text_reader import json_data
from typing import List

# read video (Temporal, Channel, Height, Width)
video_tensor, audio_tensor, video_info = neko.io.read.video.of("path/to/video.mp4")
# write video
neko.io.write.video.to("path/to/video.mp4", 
    video_tensor, video_info.video_fps,
    audio_tensor, video_info.audio_fps
)

# read audio (Channel, Temporal)
audio_tensor, sample_rate = neko.io.read.audio.of("path/to/audio.wav")
# write audio
neko.io.write.audio.to("path/to/audio.wav", audio_tensor, sample_rate)

# read image (Channel, Height, Width) with float value in range [0, 1]
image_tensor = neko.io.read.image.of("path/to/image.png")
# write image
neko.io.write.image.to_png("path/to/image.png", image_tensor)
neko.io.write.image.to_jpeg("path/to/image.jpg", image_tensor)

# read plain text
text_string = neko.io.read.text.of("path/to/text.txt")
# write plain text
neko.io.write.text.to("path/to/text.txt", text_string)

# read json as DataFrame
json_df = neko.io.read.text.of_json("path/to/json.json", to_df=True)
# read json as a object
@json_data
class JsonData:
    x: int
    y: int

json_obj: List[JsonData] = neko.io.read.text.of_json("path/to/json.json", cls=List[JsonData])
# read json as a dict or list
json_dict = neko.io.read.text.of_json("path/to/json.json")
# write json
neko.io.write.text.to_json("path/to/json.json", json_dict)

Neko preprocessing

import tensorneko as neko

# A video tensor with (120, 3, 720, 1280)
video = neko.io.read.video.of("example/video.mp4")
# Get a resized tensor with (120, 3, 256, 256)
neko.preprocess.resize_video(video, (256, 256))

All preprocessing utils

  • resize_video
  • resize_image
  • padding_video
  • padding_audio

Neko Visualization

Variable Web Watcher

Start a web server to watch the variable status when the program (e.g. training, inference, data preprocessing) is running.

import time
from tensorneko.visualization.watcher import *
data_list = ... # a list of data
def preprocessing(d): ...

# initialize the components
pb = ProgressBar("Processing", total=len(data_list))
logger = Logger("Log message")
var = Variable("Some Value", 0)
line_chart = LineChart("Line Chart", "x", "y")
view = View("Data preprocessing").add_all()

t0 = time.time()
# open server when the code block in running.
with Server(view, port=8000):
    for i, data in enumerate(data_list):
        preprocessing(data) # do some processing here
        
        x = time.time() - t0  # time since the start of the program
        y = i # processed number of data
        line_chart.add(x, y)  # add to the line chart
        logger.log("Some messages")  # log messages to the server
        var.value = ...  # keep tracking a variable
        pb.add(1)  # update the progress bar by add 1

When the script is running, go to 127.0.0.1:8000 to keep tracking the status.

Matplotlib wrappers

Display an image of (C, H, W) shape by plt.imshow wrapper.

import tensorneko as neko
import matplotlib.pyplot as plt

image_tensor = ...  # an image tensor with shape (C, H, W)
neko.visualization.imshow(image_tensor)
plt.show()

Neko Model

Build and train a simple model for classifying MNIST with MLP.

from typing import Optional, Union, Sequence, Dict, List

import torch.nn
from torch import Tensor
from torch.optim import Adam
from torchmetrics import Accuracy
from pytorch_lightning.callbacks import ModelCheckpoint

import tensorneko as neko
from tensorneko.util import get_activation, get_loss


class MnistClassifier(neko.NekoModel):

    def __init__(self, name: str, mlp_neurons: List[int], activation: str, dropout_rate: float, loss: str,
        learning_rate: float, weight_decay: float
    ):
        super().__init__(name)
        self.weight_decay = weight_decay
        self.learning_rate = learning_rate

        self.flatten = torch.nn.Flatten()
        self.mlp = neko.module.MLP(
            neurons=mlp_neurons,
            build_activation=get_activation(activation),
            dropout_rate=dropout_rate
        )
        self.loss_func = get_loss(loss)()
        self.acc_func = Accuracy()

    def forward(self, x):
        # (batch, 28, 28)
        x = self.flatten(x)
        # (batch, 768)
        x = self.mlp(x)
        # (batch, 10)
        return x

    def training_step(self, batch: Optional[Union[Tensor, Sequence[Tensor]]] = None, batch_idx: Optional[int] = None,
        optimizer_idx: Optional[int] = None, hiddens: Optional[Tensor] = None
    ) -> Dict[str, Tensor]:
        x, y = batch
        logit = self(x)
        prob = logit.sigmoid()
        loss = self.loss_func(logit, y)
        acc = self.acc_func(prob.max(dim=1)[1], y)
        return {"loss": loss, "acc": acc}

    def validation_step(self, batch: Optional[Union[Tensor, Sequence[Tensor]]] = None, batch_idx: Optional[int] = None,
        dataloader_idx: Optional[int] = None
    ) -> Dict[str, Tensor]:
        x, y = batch
        logit = self(x)
        prob = logit.sigmoid()
        loss = self.loss_func(logit, y)
        acc = self.acc_func(prob.max(dim=1)[1], y)
        return {"loss": loss, "acc": acc}

    def predict_step(self, batch: Tensor, batch_idx: int, dataloader_idx: Optional[int] = None) -> Tensor:
        x, y = batch
        logit = self(x)
        return logit

    def configure_optimizers(self):
        optimizer = Adam(self.parameters(), lr=self.learning_rate, betas=(0.5, 0.9), weight_decay=self.weight_decay)
        return {
            "optimizer": optimizer
        }


model = MnistClassifier("mnist_mlp_classifier", [784, 1024, 512, 10], "ReLU", 0.5, "CrossEntropyLoss", 1e-4, 1e-4)

dm = ...  # The MNIST datamodule from PyTorch Lightning

trainer = neko.NekoTrainer(log_every_n_steps=0, gpus=1, logger=model.name, precision=32,
    checkpoint_callback=ModelCheckpoint(dirpath="./ckpt",
        save_last=True, filename=model.name + "-{epoch}-{val_acc:.3f}", monitor="val_acc", mode="max"
    ))

trainer.fit(model, dm)

Neko Notebook Helpers

Here are some helper functions to better interact with Jupyter Notebook.

import tensorneko as neko
# display a video
neko.notebook.Display.video("path/to/video.mp4")
# display an audio
neko.notebook.Display.audio("path/to/audio.wav")
# display a code file
neko.notebook.Display.code("path/to/code.java")

Neko Utilities

StringGetter: Get PyTorch class from string.

import tensorneko as neko
activation = neko.util.get_activation("leakyRelu")()

__: The arguments to pipe operator

from tensorneko.util import __, _
result = __(20) >> (_ + 1) >> (_ * 2) >> __.get
print(result)
# 42

Seed: The universal seed for numpy, torch and Python random.

from tensorneko.util import Seed
from torch.utils.data import DataLoader

# set seed to 42 for all numpy, torch and python random
Seed.set(42)

# Apply seed to parallel workers of DataLoader
DataLoader(
    train_dataset,
    batch_size=batch_size,
    num_workers=num_workers,
    worker_init_fn=Seed.get_loader_worker_init(),
    generator=Seed.get_torch_generator()
)

dispatch: Multi-dispatch implementation for Python.

To my knowledge, 3 popular multi-dispatch libraries still have critical limitations. plum doesn't support static methods, mutipledispatch doesn't support Python type annotation syntax and multimethod doesn't support default augments. TensorNeko can do it all.

from tensorneko.util import dispatch

class DispatchExample:

    @staticmethod
    @dispatch
    def go() -> None:
        print("Go0")

    @staticmethod
    @dispatch
    def go(x: int) -> None:
        print("Go1")

    @staticmethod
    @dispatch
    def go(x: float, y: float = 1.0) -> None:
        print("Go2")

@dispatch
def come(x: int) -> str:
    return "Come1"

@dispatch.of(str)
def come(x) -> str:
    return "Come2"

Utilities list:

  • reduce_dict_by
  • summarize_dict_by
  • generate_inf_seq
  • compose
  • listdir
  • with_printed
  • with_printed_shape
  • is_bad_num
  • ifelse
  • dict_add
  • count_parameters
  • as_list
  • Configuration
  • get_activation
  • get_loss
  • Seed
  • dispatch
  • __

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tensorneko-0.1.23.tar.gz (1.9 MB view hashes)

Uploaded Source

Built Distribution

tensorneko-0.1.23-py3-none-any.whl (1.9 MB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page