Pytorch wrapper for fast prototyping
Project description
# tensorop <img style=”float: centre;” src=”tensorop_logo.png”>
[](https://badge.fury.io/py/tensorop)
Tensorop is a Pytorch wrapper for fast prototyping for research purposes. Main purpose is to bring functionalities that Pytorch or other frameworks lack for some reason and to include best practices being used in research.
## Getting Started
### Prerequisites
Install pytorch and torchvision from [pytorch.org](pytorch.org) - Pytorch >= 0.4 - Torchvision - Pandas - Numpy
### Installing Installation via Pypi ` $ pip3 install tensorop ` Using with git ` $ git clone https://github.com/prajjwal1/tensorop $ cd tensorop `
### To check installation ` $ >>> import tensorop; print(tensorop.__version__) `
### Components (Structure) - Vision - GANs - Models - Datasets - Layers - Loss Functions - Numpy utilities - tensorop.torch - Utilities (I/O)
These are frequently changing once v0.1 is out
## Contributing There is so much work which needs to be done as of now, PRs are always welcome. Look for [issues](https://github.com/prajjwal1/tensorop/issues) to get started.
Docs can be found [here](https://prajjwal1.github.io/tensorop/). These are not updated frequently since the framework is under constant development.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Filename, size | File type | Python version | Upload date | Hashes |
---|---|---|---|---|
Filename, size tensorop-0.0.7.7-py2-none-any.whl (15.3 kB) | File type Wheel | Python version py2 | Upload date | Hashes View |
Hashes for tensorop-0.0.7.7-py2-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9cd1161480c07d34acbd170d1eda3125f65bc8a3bb76a2b5a4d6da861fd17de8 |
|
MD5 | 58ff4c827dcdb06b55ef828fe0c525c2 |
|
BLAKE2-256 | a96740489964523af8abcf0f37da2371b94ef60e7597b42e156a025d1a015fd5 |