Skip to main content

Tensor-based Phase-Amplitude Coupling

Project description

https://travis-ci.org/EtienneCmb/tensorpac.svg?branch=master https://codecov.io/gh/EtienneCmb/tensorpac/branch/master/graph/badge.svg https://badge.fury.io/py/Tensorpac.svg

Tensorpac

https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/tp.png

Description

Tensorpac is an Python open-source toolbox for computing Phase-Amplitude Coupling (PAC) using tensors and parallel computing. On top of that, we designed a modular implementation with a relatively large amount of parameters. Checkout the documentation for further details.

Installation

Tensorpac use NumPy, SciPy and joblib for parallel computing. In a terminal, run :

pip install tensorpac

Code snippet & illustration

import matplotlib.pyplot as plt
from tensorpac.utils import pac_signals
from tensorpac import Pac

# Dataset of signals artificially coupled between 10hz and 100hz :
n = 100  # number of datasets
data, time = pac_signals(fpha=10, famp=100, noise=3, ndatasets=n, dpha=10, damp=10)

# Extract PAC :
p = Pac(idpac=(4, 0, 0), fpha=(2, 30, 1, 1), famp=(60, 150, 5, 5),
        dcomplex='wavelet', width=12)
xpac, pval = p.filterfit(1024, data, data, axis=1, nperm=100)

# Plot your Phase-Amplitude Coupling :
p.comodulogram(xpac.mean(-1), title='Contour plot with 5 regions',
               cmap='Spectral_r', plotas='contour', ncontours=5, vmin=60, vmax=300)

plt.show()
https://github.com/EtienneCmb/tensorpac/blob/master/docs/source/picture/readme.png

Contributors

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

Tensorpac-0.5.3.tar.gz (22.5 kB view details)

Uploaded Source

File details

Details for the file Tensorpac-0.5.3.tar.gz.

File metadata

  • Download URL: Tensorpac-0.5.3.tar.gz
  • Upload date:
  • Size: 22.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No

File hashes

Hashes for Tensorpac-0.5.3.tar.gz
Algorithm Hash digest
SHA256 8e242688d697ca768201446302a00f9a6f6be576ccde4539bed430bf53d5cff9
MD5 98cd79cf4cf648b78270e6ae0f77adf7
BLAKE2b-256 2b9fa0df5ed326234a18c18145d7a3280ef0233e836f35abafa8333d55c68489

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page