Skip to main content

Preprocessing system for the TerM (INM RAS-MSU land surface model)

Project description

Preprocessing system (TerMPS) delivering the land surface parameters for the INM RAS-MSU (TerM) model.

Preprocessing system was developed in the Python programming language (Python 3) in the form of a py-module (preprocessing_module.py). The module (preprocessing_module.py) consists of several parts.

  1. Functions for generating data on an arbitrary uniform latitude-longitude grid:
    • read_data
    • create_grid
    • select_cells
    • calc_area_cell
    • calc_weighted_average
    • calc_weighted_average4grid (multiprocessor mode)
    • calc_percentage_type
  2. Functions for generating data on an arbitrary vertical (depth) grid:
    • calc_layer_bounds
    • calc_delta_layer
    • recalc_levels
  3. Additional functions:
    • write_netcdf_2d
    • write_netcdf_3d
    • convert_tiff_to_netcdf

A detailed description of the package is presented on the Wiki.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

termps-0.0.2.1.tar.gz (9.9 kB view details)

Uploaded Source

Built Distribution

TerMPS-0.0.2.1-py3-none-any.whl (9.5 kB view details)

Uploaded Python 3

File details

Details for the file termps-0.0.2.1.tar.gz.

File metadata

  • Download URL: termps-0.0.2.1.tar.gz
  • Upload date:
  • Size: 9.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for termps-0.0.2.1.tar.gz
Algorithm Hash digest
SHA256 7ed4fd8b4d063918c34e4e738d05d52cd9ea858244267779c56da54b954c78e9
MD5 ae267c653b1e0d18af44c802ade31c8f
BLAKE2b-256 683dfa07271756426cb45fa859e50e51789924b2bd15b601d8ae8a9f03fd6d3a

See more details on using hashes here.

File details

Details for the file TerMPS-0.0.2.1-py3-none-any.whl.

File metadata

  • Download URL: TerMPS-0.0.2.1-py3-none-any.whl
  • Upload date:
  • Size: 9.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.12.3

File hashes

Hashes for TerMPS-0.0.2.1-py3-none-any.whl
Algorithm Hash digest
SHA256 118dad7bb1a1cf7493e912067622414b23377b392e3ddfc7f56a60a6a6585683
MD5 0af538a92551c2b37af27884403c9fc0
BLAKE2b-256 fe5c20b23e8a445bc476652f8734f97ed74d40bd0a81272b0a6c805eac32ecbe

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page