Skip to main content

Automatically deserialize complex objects from simple Python types

Project description

dragon

terramare

python: 3.6 | 3.7 | 3.8 license: MIT ci status coverage Checked with mypy Code style: black Conventional Commits

Automatically construct complex objects from simple Python types.

Highlights:

  • No boilerplate: terramare uses Python's standard type hints to determine how to construct instances of a class;
  • Format-agnostic: terramare takes simple Python types as input - pass it the output from json.load, toml.load, or yaml.load;
  • Non-invasive: terramare requires no modifications to your existing classes and functions beyond standard type hints;

Example

Deserializing a Simple Class

Consider the following simple class, defined using attrs for brevity:

>>> from typing import List
>>> import attr
>>> import terramare

>>> @attr.s(auto_attribs=True)
... class Example:
...     words: List[str]
...
...     def __str__(self):
...         return " ".join(self.words)

Deserializing an instance of the class from a dictionary is as simple as:

>>> print(terramare.deserialize_into(Example, {"words": ["hello", "world!"]}))
hello world!

Deserializing a More Complex Class

Consider the Person class defined below:

>>> from typing import NamedTuple, NewType, Sequence
>>> import attr
>>> import terramare

    # `terramare` handles NamedTuples
>>> class Location(NamedTuple):
...     longitude: float
...     latitude: float


    # `terramare` handles NewType aliases
>>> JobTitle = NewType("JobTitle", str)


    # `terramare` handles custom classes
>>> class Occupation:
...     def __init__(self, title: JobTitle, field: str):
...         self.title = title
...         self.field = field
...
...     def __eq__(self, other):
...         if isinstance(other, self.__class__):
...             return vars(self) == vars(other)
...         return False
...
...     def __repr__(self):
...         return "Occupation('{0.title}', '{0.field}')".format(self)


>>> @attr.s(auto_attribs=True)
... class Person:
...     name: str
...     age: int
...     friends: Sequence[str]
...
...     # `terramare` handles complex member variable types
...     location: Location
...     occupation: Occupation

Again, deserialization is a single function call:

>>> terramare.deserialize_into(
...     Person,
...     {
...         "name": "Alice",
...         "age": 20,
...         "friends": ["Bob", "Charlie"],
...         "location": [51.5074, 0.1278],
...         "occupation": {"title": "programmer", "field": "technology"}
...     }
... )
Person(name='Alice', age=20, friends=['Bob', 'Charlie'], location=Location(longitude=51.5074, latitude=0.1278), occupation=Occupation('programmer', 'technology'))

Installation

Install using pip:

pip install terramare

Alternatives

Check out:

  • pydantic - "Data validation and settings management using python type annotations". A much more mature library also using Python's standard type hints for deserialization that requires a little more integration with your code;
  • schematics - "...combine types into structures, validate them, and transform the shapes of your data based on simple descriptions". Uses custom types instead of Python's standard type hints;
  • cerberus - "...provides powerful yet simple and lightweight data validation functionality out of the box and is designed to be easily extensible, allowing for custom validation". Schema validation that doesn't change the type of the primitive value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

terramare-0.3.0.tar.gz (20.7 kB view details)

Uploaded Source

Built Distribution

terramare-0.3.0-py3-none-any.whl (27.4 kB view details)

Uploaded Python 3

File details

Details for the file terramare-0.3.0.tar.gz.

File metadata

  • Download URL: terramare-0.3.0.tar.gz
  • Upload date:
  • Size: 20.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.0.tar.gz
Algorithm Hash digest
SHA256 40e16928de300c366ca587a8ece483a4f2057a8b8c0b78f0167e73bddca3b0a7
MD5 c526f0826571b1e0d1c25c44b5bcc3d4
BLAKE2b-256 a39e7c6b3c6b8171af6c8f40e1e1b7a218e0e1fdc6a625cf08a5353be80107a4

See more details on using hashes here.

File details

Details for the file terramare-0.3.0-py3-none-any.whl.

File metadata

  • Download URL: terramare-0.3.0-py3-none-any.whl
  • Upload date:
  • Size: 27.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 d3eaaf8dd96730c3e62cddffcec726dc216fb67a47f36f130c5ef55f18bff212
MD5 5c719ff142cf33a1dabcdfaf1a88353a
BLAKE2b-256 ebb4cd8a10bb33cbdb6fdd1d07356f964f41eac5a7d5fa44067a4852438af863

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page