Skip to main content

Automatically deserialize complex objects from simple Python types

Project description

dragon

terramare

python: 3.6 | 3.7 | 3.8 license: MIT PyPI PyPI - Downloads docs: pages

ci status coverage Checked with mypy Code style: black Conventional Commits

Automatically construct complex objects from simple Python types.

Highlights:

  • No boilerplate: terramare uses Python's standard type hints to determine how to construct instances of a class;
  • Format-agnostic: terramare takes simple Python types as input - pass it the output from json.load, toml.load, or yaml.load;
  • Non-invasive: terramare requires no modifications to your existing classes and functions beyond standard type hints;

Full documentation available at https://tomwatson1024.gitlab.io/terramare/.

Example

Deserializing a Simple Class

Consider the following simple class, defined using attrs for brevity:

>>> from typing import List
>>> import attr
>>> import terramare

>>> @attr.s(auto_attribs=True)
... class Example:
...     words: List[str]
...
...     def __str__(self):
...         return " ".join(self.words)

Deserializing an instance of the class from a dictionary is as simple as:

>>> print(terramare.deserialize_into(Example, {"words": ["hello", "world!"]}))
hello world!

Deserializing a More Complex Class

Consider the Person class defined below:

>>> from typing import NamedTuple, NewType, Sequence
>>> import attr
>>> import terramare

    # `terramare` handles NamedTuples
>>> class Location(NamedTuple):
...     longitude: float
...     latitude: float


    # `terramare` handles NewType aliases
>>> JobTitle = NewType("JobTitle", str)


    # `terramare` handles custom classes
>>> class Occupation:
...     def __init__(self, title: JobTitle, field: str):
...         self.title = title
...         self.field = field
...
...     def __eq__(self, other):
...         if isinstance(other, self.__class__):
...             return vars(self) == vars(other)
...         return False
...
...     def __repr__(self):
...         return "Occupation('{0.title}', '{0.field}')".format(self)


>>> @attr.s(auto_attribs=True)
... class Person:
...     name: str
...     age: int
...     friends: Sequence[str]
...
...     # `terramare` handles complex member variable types
...     location: Location
...     occupation: Occupation

Again, deserialization is a single function call:

>>> terramare.deserialize_into(
...     Person,
...     {
...         "name": "Alice",
...         "age": 20,
...         "friends": ["Bob", "Charlie"],
...         "location": [51.5074, 0.1278],
...         "occupation": {"title": "programmer", "field": "technology"}
...     }
... )
Person(name='Alice', age=20, friends=['Bob', 'Charlie'], location=Location(longitude=51.5074, latitude=0.1278), occupation=Occupation('programmer', 'technology'))

Installation

Install using pip:

pip install terramare

Alternatives

Check out:

  • pydantic - "Data validation and settings management using python type annotations". A much more mature library also using Python's standard type hints for deserialization that requires a little more integration with your code;
  • schematics - "...combine types into structures, validate them, and transform the shapes of your data based on simple descriptions". Uses custom types instead of Python's standard type hints;
  • cerberus - "...provides powerful yet simple and lightweight data validation functionality out of the box and is designed to be easily extensible, allowing for custom validation". Schema validation that doesn't change the type of the primitive value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

terramare-0.3.3.tar.gz (33.2 kB view details)

Uploaded Source

Built Distribution

terramare-0.3.3-py3-none-any.whl (38.8 kB view details)

Uploaded Python 3

File details

Details for the file terramare-0.3.3.tar.gz.

File metadata

  • Download URL: terramare-0.3.3.tar.gz
  • Upload date:
  • Size: 33.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.3.tar.gz
Algorithm Hash digest
SHA256 a2214609d3e75ffdce55b3e038bb6b9d5fc09f480902ee87d46afd7779c1acc9
MD5 29d06af164259fb17ec4707dc4b3298b
BLAKE2b-256 8a0e67fb0c573297ccb5b7aa6bee72fd82df388c53dbb7aeb131bab4122f6945

See more details on using hashes here.

File details

Details for the file terramare-0.3.3-py3-none-any.whl.

File metadata

  • Download URL: terramare-0.3.3-py3-none-any.whl
  • Upload date:
  • Size: 38.8 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.3-py3-none-any.whl
Algorithm Hash digest
SHA256 0ea9130a28a796af11365a518a09172f13fb4bdfb7d213c1ac54c16831e30d5b
MD5 afda0394430ecb7cab699e332a91165a
BLAKE2b-256 5bb27145fdc220f48b6f3153c6b14a080cd598e498c0124c87169c409ab0373e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page