Skip to main content

Automatically deserialize complex objects from simple Python types

Project description

dragon

terramare

python: 3.6 | 3.7 | 3.8 license: MIT PyPI PyPI - Downloads docs: pages

ci status coverage Checked with mypy Code style: black Conventional Commits

Automatically construct complex objects from simple Python types.

Highlights:

  • No boilerplate: terramare uses Python's standard type hints to determine how to construct instances of a class;
  • Format-agnostic: terramare takes simple Python types as input - pass it the output from json.load, toml.load, or yaml.load;
  • Non-invasive: terramare requires no modifications to your existing classes and functions beyond standard type hints;

Full documentation available at https://tomwatson1024.gitlab.io/terramare/.

Example

Deserializing a Simple Class

Consider the following simple class, defined using attrs for brevity:

>>> from typing import List
>>> import attr
>>> import terramare

>>> @attr.s(auto_attribs=True)
... class Example:
...     words: List[str]
...
...     def __str__(self):
...         return " ".join(self.words)

Deserializing an instance of the class from a dictionary is as simple as:

>>> print(terramare.deserialize_into(Example, {"words": ["hello", "world!"]}))
hello world!

Deserializing a More Complex Class

Consider the Person class defined below:

>>> from typing import NamedTuple, NewType, Sequence
>>> import attr
>>> import terramare

    # `terramare` handles NamedTuples
>>> class Location(NamedTuple):
...     longitude: float
...     latitude: float


    # `terramare` handles NewType aliases
>>> JobTitle = NewType("JobTitle", str)


    # `terramare` handles custom classes
>>> class Occupation:
...     def __init__(self, title: JobTitle, field: str):
...         self.title = title
...         self.field = field
...
...     def __eq__(self, other):
...         if isinstance(other, self.__class__):
...             return vars(self) == vars(other)
...         return False
...
...     def __repr__(self):
...         return "Occupation('{0.title}', '{0.field}')".format(self)


>>> @attr.s(auto_attribs=True)
... class Person:
...     name: str
...     age: int
...     friends: Sequence[str]
...
...     # `terramare` handles complex member variable types
...     location: Location
...     occupation: Occupation

Again, deserialization is a single function call:

>>> terramare.deserialize_into(
...     Person,
...     {
...         "name": "Alice",
...         "age": 20,
...         "friends": ["Bob", "Charlie"],
...         "location": [51.5074, 0.1278],
...         "occupation": {"title": "programmer", "field": "technology"}
...     }
... )
Person(name='Alice', age=20, friends=['Bob', 'Charlie'], location=Location(longitude=51.5074, latitude=0.1278), occupation=Occupation('programmer', 'technology'))

Installation

Install using pip:

pip install terramare

Alternatives

Check out:

  • pydantic - "Data validation and settings management using python type annotations". A much more mature library also using Python's standard type hints for deserialization that requires a little more integration with your code;
  • schematics - "...combine types into structures, validate them, and transform the shapes of your data based on simple descriptions". Uses custom types instead of Python's standard type hints;
  • cerberus - "...provides powerful yet simple and lightweight data validation functionality out of the box and is designed to be easily extensible, allowing for custom validation". Schema validation that doesn't change the type of the primitive value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

terramare-0.3.4.tar.gz (33.5 kB view details)

Uploaded Source

Built Distribution

terramare-0.3.4-py3-none-any.whl (39.0 kB view details)

Uploaded Python 3

File details

Details for the file terramare-0.3.4.tar.gz.

File metadata

  • Download URL: terramare-0.3.4.tar.gz
  • Upload date:
  • Size: 33.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.4.tar.gz
Algorithm Hash digest
SHA256 8317ec5d31148455c05b8fd8cc4350139b0ff3d75161a20239ea90b03aff8e07
MD5 5c90ddfd81f67425e24932d967dc2e45
BLAKE2b-256 ba0ced25fe094106983d2e355eda0e801a7dbade5942f725b4d9055110657466

See more details on using hashes here.

File details

Details for the file terramare-0.3.4-py3-none-any.whl.

File metadata

  • Download URL: terramare-0.3.4-py3-none-any.whl
  • Upload date:
  • Size: 39.0 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.4-py3-none-any.whl
Algorithm Hash digest
SHA256 6ccacb3f43e70720be1ef4b6bf908f0197428edb1bb8cf5f9ea9294f74e19819
MD5 8e699aa25251eaeb0766581d397687f5
BLAKE2b-256 6f50aa166ae22ea803e1fa3c1f3cc562dfcc2f205d3b75f5712f1f244afae65e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page