Skip to main content

Automatically deserialize complex objects from simple Python types

Project description

dragon

terramare

python: 3.6 | 3.7 | 3.8 license: MIT PyPI PyPI - Downloads docs: pages

ci status coverage Checked with mypy Code style: black Conventional Commits

Automatically construct complex objects from simple Python types.

Highlights:

  • No boilerplate: terramare uses Python's standard type hints to determine how to construct instances of a class;
  • Format-agnostic: terramare takes simple Python types as input - pass it the output from json.load, toml.load, or yaml.load;
  • Non-invasive: terramare requires no modifications to your existing classes and functions beyond standard type hints;

Full documentation available at https://tomwatson1024.gitlab.io/terramare/.

Example

Deserializing a Simple Class

Consider the following simple class, defined using attrs for brevity:

>>> from typing import List
>>> import attr
>>> import terramare

>>> @attr.s(auto_attribs=True)
... class Example:
...     words: List[str]
...
...     def __str__(self):
...         return " ".join(self.words)

Deserializing an instance of the class from a dictionary is as simple as:

>>> print(terramare.deserialize_into(Example, {"words": ["hello", "world!"]}))
hello world!

Deserializing a More Complex Class

Consider the Person class defined below:

>>> from typing import NamedTuple, NewType, Sequence
>>> import attr
>>> import terramare

    # `terramare` handles NamedTuples
>>> class Location(NamedTuple):
...     longitude: float
...     latitude: float


    # `terramare` handles NewType aliases
>>> JobTitle = NewType("JobTitle", str)


    # `terramare` handles custom classes
>>> class Occupation:
...     def __init__(self, title: JobTitle, field: str):
...         self.title = title
...         self.field = field
...
...     def __eq__(self, other):
...         if isinstance(other, self.__class__):
...             return vars(self) == vars(other)
...         return False
...
...     def __repr__(self):
...         return "Occupation('{0.title}', '{0.field}')".format(self)


>>> @attr.s(auto_attribs=True)
... class Person:
...     name: str
...     age: int
...     friends: Sequence[str]
...
...     # `terramare` handles complex member variable types
...     location: Location
...     occupation: Occupation

Again, deserialization is a single function call:

>>> terramare.deserialize_into(
...     Person,
...     {
...         "name": "Alice",
...         "age": 20,
...         "friends": ["Bob", "Charlie"],
...         "location": [51.5074, 0.1278],
...         "occupation": {"title": "programmer", "field": "technology"}
...     }
... )
Person(name='Alice', age=20, friends=['Bob', 'Charlie'], location=Location(longitude=51.5074, latitude=0.1278), occupation=Occupation('programmer', 'technology'))

Installation

Install using pip:

pip install terramare

Alternatives

Check out:

  • pydantic - "Data validation and settings management using python type annotations". A much more mature library also using Python's standard type hints for deserialization that requires a little more integration with your code;
  • schematics - "...combine types into structures, validate them, and transform the shapes of your data based on simple descriptions". Uses custom types instead of Python's standard type hints;
  • cerberus - "...provides powerful yet simple and lightweight data validation functionality out of the box and is designed to be easily extensible, allowing for custom validation". Schema validation that doesn't change the type of the primitive value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

terramare-0.3.5.tar.gz (36.7 kB view details)

Uploaded Source

Built Distribution

terramare-0.3.5-py3-none-any.whl (44.3 kB view details)

Uploaded Python 3

File details

Details for the file terramare-0.3.5.tar.gz.

File metadata

  • Download URL: terramare-0.3.5.tar.gz
  • Upload date:
  • Size: 36.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.5.tar.gz
Algorithm Hash digest
SHA256 f3a6ae4ffc73bad27e51524960f3142ef5c48fd3f17768f311e7253f147049ad
MD5 57c7f270d8f1b054fddbd22f8c841fd4
BLAKE2b-256 324dad7949755dbcbd2d00374c49063d1d5ffe550c1d8cbe8933f33c6c91362a

See more details on using hashes here.

File details

Details for the file terramare-0.3.5-py3-none-any.whl.

File metadata

  • Download URL: terramare-0.3.5-py3-none-any.whl
  • Upload date:
  • Size: 44.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.5-py3-none-any.whl
Algorithm Hash digest
SHA256 242b2a096bc986830c9ff212f9db79adfc0f60df2d3a9366c39682992e810f16
MD5 18f2d21307020fc2aed0372c9239deaa
BLAKE2b-256 8331e17a279f8c79d16fca98a60436e929b90a341ebf65bf80abfc1966556511

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page