Skip to main content

Automatically deserialize complex objects from simple Python types

Project description

dragon

terramare

python: 3.6 | 3.7 | 3.8 license: MIT PyPI PyPI - Downloads docs: pages

ci status coverage Checked with mypy Code style: black Conventional Commits

Automatically construct complex objects from simple Python types.

Highlights:

  • No boilerplate: terramare uses Python's standard type hints to determine how to construct instances of a class;
  • Format-agnostic: terramare takes simple Python types as input - pass it the output from json.load, toml.load, or yaml.load;
  • Non-invasive: terramare requires no modifications to your existing classes and functions beyond standard type hints;

Full documentation available at https://tomwatson1024.gitlab.io/terramare/.

Example

Deserializing a Simple Class

Consider the following simple class, defined using attrs for brevity:

>>> from typing import List
>>> import attr
>>> import terramare

>>> @attr.s(auto_attribs=True)
... class Example:
...     words: List[str]
...
...     def __str__(self):
...         return " ".join(self.words)

Deserializing an instance of the class from a dictionary is as simple as:

>>> print(terramare.deserialize_into(Example, {"words": ["hello", "world!"]}))
hello world!

Deserializing a More Complex Class

Consider the Person class defined below:

>>> from typing import NamedTuple, NewType, Sequence
>>> import attr
>>> import terramare

    # `terramare` handles NamedTuples
>>> class Location(NamedTuple):
...     longitude: float
...     latitude: float


    # `terramare` handles NewType aliases
>>> JobTitle = NewType("JobTitle", str)


    # `terramare` handles custom classes
>>> class Occupation:
...     def __init__(self, title: JobTitle, field: str):
...         self.title = title
...         self.field = field
...
...     def __eq__(self, other):
...         if isinstance(other, self.__class__):
...             return vars(self) == vars(other)
...         return False
...
...     def __repr__(self):
...         return "Occupation('{0.title}', '{0.field}')".format(self)


>>> @attr.s(auto_attribs=True)
... class Person:
...     name: str
...     age: int
...     friends: Sequence[str]
...
...     # `terramare` handles complex member variable types
...     location: Location
...     occupation: Occupation

Again, deserialization is a single function call:

>>> terramare.deserialize_into(
...     Person,
...     {
...         "name": "Alice",
...         "age": 20,
...         "friends": ["Bob", "Charlie"],
...         "location": [51.5074, 0.1278],
...         "occupation": {"title": "programmer", "field": "technology"}
...     }
... )
Person(name='Alice', age=20, friends=['Bob', 'Charlie'], location=Location(longitude=51.5074, latitude=0.1278), occupation=Occupation('programmer', 'technology'))

Installation

Install using pip:

pip install terramare

Alternatives

Check out:

  • pydantic - "Data validation and settings management using python type annotations". A much more mature library also using Python's standard type hints for deserialization that requires a little more integration with your code;
  • schematics - "...combine types into structures, validate them, and transform the shapes of your data based on simple descriptions". Uses custom types instead of Python's standard type hints;
  • cerberus - "...provides powerful yet simple and lightweight data validation functionality out of the box and is designed to be easily extensible, allowing for custom validation". Schema validation that doesn't change the type of the primitive value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

terramare-0.3.6.tar.gz (37.2 kB view details)

Uploaded Source

Built Distribution

terramare-0.3.6-py3-none-any.whl (44.9 kB view details)

Uploaded Python 3

File details

Details for the file terramare-0.3.6.tar.gz.

File metadata

  • Download URL: terramare-0.3.6.tar.gz
  • Upload date:
  • Size: 37.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.6.tar.gz
Algorithm Hash digest
SHA256 f4fce66d7a1fa0b54875bc1393e481b4426d5a949ce01b7e4d32bc65e76bcffb
MD5 930b2acd38605824e969d376b1494eeb
BLAKE2b-256 3aa9a8a701c7d82332a38730317bd66b0ab46c220b1cbc983f8dd347227cceae

See more details on using hashes here.

File details

Details for the file terramare-0.3.6-py3-none-any.whl.

File metadata

  • Download URL: terramare-0.3.6-py3-none-any.whl
  • Upload date:
  • Size: 44.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.0.2 CPython/3.6.10 Linux/4.19.78-coreos

File hashes

Hashes for terramare-0.3.6-py3-none-any.whl
Algorithm Hash digest
SHA256 9f2ee3a5da0ac33f41a350720c05d540251fa4dcffd3b0f2c24a426ce26e2ffd
MD5 bce6704704ff054a1cc570d3e8db635f
BLAKE2b-256 c565bc2d7eaa88637348aa9979ccd779e1cb6f02048b7917be01586dd8e53e0f

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page