Skip to main content

Automatically construct complex objects from simple Python types.

Project description

dragon

terramare

python: 3.6 | 3.7 | 3.8 | 3.9 license: MIT PyPI PyPI - Downloads docs: pages

ci status coverage Checked with mypy Code style: black Conventional Commits

Automatically construct complex objects from simple Python types.

Highlights:

  • No boilerplate: terramare uses Python's standard type hints to determine how to construct instances of a class;
  • Format-agnostic: terramare takes simple Python types as input - pass it the output from json.load, toml.load, or yaml.load;
  • Non-invasive: terramare requires no modifications to your existing classes and functions beyond standard type hints;

Full documentation available at https://tomwatson1024.gitlab.io/terramare/.

Example

Deserializing a Simple Class

Consider the following simple class, defined using attrs for brevity:

>>> from typing import List
>>> import attr
>>> import terramare

>>> @attr.s(auto_attribs=True)
... class Example:
...     words: List[str]
...
...     def __str__(self):
...         return " ".join(self.words)

Deserializing an instance of the class from a dictionary is as simple as:

>>> print(terramare.structure({"words": ["hello", "world!"]}, into=Example))
hello world!

Deserializing a More Complex Class

Consider the Person class defined below:

>>> from typing import NamedTuple, NewType, Sequence
>>> import attr
>>> import terramare

    # `terramare` handles NamedTuples
>>> class Location(NamedTuple):
...     longitude: float
...     latitude: float


    # `terramare` handles NewType aliases
>>> JobTitle = NewType("JobTitle", str)


    # `terramare` handles custom classes [experimental]
>>> @terramare.auto
... class Occupation:
...     def __init__(self, title: JobTitle, field: str):
...         self.title = title
...         self.field = field
...
...     def __eq__(self, other):
...         if isinstance(other, self.__class__):
...             return vars(self) == vars(other)
...         return False
...
...     def __repr__(self):
...         return "Occupation('{0.title}', '{0.field}')".format(self)


>>> @attr.s(auto_attribs=True)
... class Person:
...     name: str
...     age: int
...     friends: Sequence[str]
...
...     # `terramare` handles complex member variable types
...     location: Location
...     occupation: Occupation

Again, deserialization is a single function call:

>>> terramare.structure(
...     {
...         "name": "Alice",
...         "age": 20,
...         "friends": ["Bob", "Charlie"],
...         "location": [51.5074, 0.1278],
...         "occupation": {"title": "programmer", "field": "technology"}
...     },
...     into=Person,
... )
Person(name='Alice', age=20, friends=['Bob', 'Charlie'], location=Location(longitude=51.5074, latitude=0.1278), occupation=Occupation('programmer', 'technology'))

Installation

Install using pip:

pip install terramare

Alternatives

Check out:

  • pydantic - "Data validation and settings management using python type annotations". A much more mature library also using Python's standard type hints for deserialization that requires a little more integration with your code;
  • schematics - "...combine types into structures, validate them, and transform the shapes of your data based on simple descriptions". Uses custom types instead of Python's standard type hints;
  • cerberus - "...provides powerful yet simple and lightweight data validation functionality out of the box and is designed to be easily extensible, allowing for custom validation". Schema validation that doesn't change the type of the primitive value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

terramare-0.5.0.tar.gz (28.8 kB view details)

Uploaded Source

Built Distribution

terramare-0.5.0-py3-none-any.whl (34.6 kB view details)

Uploaded Python 3

File details

Details for the file terramare-0.5.0.tar.gz.

File metadata

  • Download URL: terramare-0.5.0.tar.gz
  • Upload date:
  • Size: 28.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.6.15 Linux/5.4.109+

File hashes

Hashes for terramare-0.5.0.tar.gz
Algorithm Hash digest
SHA256 f3917dc3a8396cf9073978498d34c282357501f0e7aa6f9ba58236c42a253713
MD5 c2146589185a37e9ce6dbe21bbd81e63
BLAKE2b-256 320d40cb8870e7760eb687a50b84c326d4ecff559c58c96248ea5e0d34be4d9a

See more details on using hashes here.

File details

Details for the file terramare-0.5.0-py3-none-any.whl.

File metadata

  • Download URL: terramare-0.5.0-py3-none-any.whl
  • Upload date:
  • Size: 34.6 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.6.15 Linux/5.4.109+

File hashes

Hashes for terramare-0.5.0-py3-none-any.whl
Algorithm Hash digest
SHA256 0b06c7baca889fdcb16941054c119960bf26d0cf7e3c16d9a5908d00b9649502
MD5 07d3b6baa57ad8b78d3e323f6b6c8d14
BLAKE2b-256 f2e474a6cebfcd40af1a2f721287375dda37561bd78ce1681f6ffef22649b29e

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page