Skip to main content

Automatically construct complex objects from simple Python types.

Project description

dragon

terramare

python: 3.6 | 3.7 | 3.8 | 3.9 | 3.10 license: MIT PyPI PyPI - Downloads docs: pages

ci status coverage Checked with mypy Code style: black Conventional Commits

Automatically construct complex objects from simple Python types.

Highlights:

  • No boilerplate: terramare uses Python's standard type hints to determine how to construct instances of a class;
  • Format-agnostic: terramare takes simple Python types as input - pass it the output from json.load, toml.load, or yaml.load;
  • Non-invasive: terramare requires no modifications to your existing classes and functions beyond standard type hints;

Full documentation available at https://tomwatson1024.gitlab.io/terramare/.

Example

Deserializing a Simple Class

Consider the following simple class, defined using attrs for brevity:

>>> from typing import List
>>> import attr
>>> import terramare

>>> @attr.s(auto_attribs=True)
... class Example:
...     words: List[str]
...
...     def __str__(self):
...         return " ".join(self.words)

Deserializing an instance of the class from a dictionary is as simple as:

>>> print(terramare.structure({"words": ["hello", "world!"]}, into=Example))
hello world!

Deserializing a More Complex Class

Consider the Person class defined below:

>>> from typing import NamedTuple, NewType, Sequence
>>> import attr
>>> import terramare

    # `terramare` handles NamedTuples
>>> class Location(NamedTuple):
...     longitude: float
...     latitude: float


    # `terramare` handles NewType aliases
>>> JobTitle = NewType("JobTitle", str)


    # `terramare` handles custom classes [experimental]
>>> @terramare.auto
... class Occupation:
...     def __init__(self, title: JobTitle, field: str):
...         self.title = title
...         self.field = field
...
...     def __eq__(self, other):
...         if isinstance(other, self.__class__):
...             return vars(self) == vars(other)
...         return False
...
...     def __repr__(self):
...         return "Occupation('{0.title}', '{0.field}')".format(self)


>>> @attr.s(auto_attribs=True)
... class Person:
...     name: str
...     age: int
...     friends: Sequence[str]
...
...     # `terramare` handles complex member variable types
...     location: Location
...     occupation: Occupation

Again, deserialization is a single function call:

>>> terramare.structure(
...     {
...         "name": "Alice",
...         "age": 20,
...         "friends": ["Bob", "Charlie"],
...         "location": [51.5074, 0.1278],
...         "occupation": {"title": "programmer", "field": "technology"}
...     },
...     into=Person,
... )
Person(name='Alice', age=20, friends=['Bob', 'Charlie'], location=Location(longitude=51.5074, latitude=0.1278), occupation=Occupation('programmer', 'technology'))

Installation

Install using pip:

pip install terramare

Alternatives

Check out:

  • pydantic - "Data validation and settings management using python type annotations". A much more mature library also using Python's standard type hints for deserialization that requires a little more integration with your code;
  • schematics - "...combine types into structures, validate them, and transform the shapes of your data based on simple descriptions". Uses custom types instead of Python's standard type hints;
  • cerberus - "...provides powerful yet simple and lightweight data validation functionality out of the box and is designed to be easily extensible, allowing for custom validation". Schema validation that doesn't change the type of the primitive value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

terramare-0.5.3.tar.gz (31.7 kB view details)

Uploaded Source

Built Distribution

terramare-0.5.3-py3-none-any.whl (38.2 kB view details)

Uploaded Python 3

File details

Details for the file terramare-0.5.3.tar.gz.

File metadata

  • Download URL: terramare-0.5.3.tar.gz
  • Upload date:
  • Size: 31.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.6.15 Linux/5.4.109+

File hashes

Hashes for terramare-0.5.3.tar.gz
Algorithm Hash digest
SHA256 f9764506415c66690dfce9fe34f6e77930432d5e640941d64beb77a189197f2a
MD5 5a6a5981ced359aba4a966080a73ee7f
BLAKE2b-256 1d6f061ba42a7d4c8e9c94999307995f65da31486b4fcb43c5e36c2af12bd2ec

See more details on using hashes here.

File details

Details for the file terramare-0.5.3-py3-none-any.whl.

File metadata

  • Download URL: terramare-0.5.3-py3-none-any.whl
  • Upload date:
  • Size: 38.2 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.6.15 Linux/5.4.109+

File hashes

Hashes for terramare-0.5.3-py3-none-any.whl
Algorithm Hash digest
SHA256 efdafdeb5723a22242dc416a2f41d8d33cc8e7876f8461aae808e00be533072c
MD5 8b2941bbacc7578117913d0c6c0c265a
BLAKE2b-256 48d8ff5a0d0f5afde59f2119237f3ddb37158f62d9cbd95452b5a1d409ecb3b3

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page