Skip to main content

Automatically construct complex objects from simple Python types.

Project description

dragon

terramare

python: 3.6 | 3.7 | 3.8 | 3.9 | 3.10 license: MIT PyPI PyPI - Downloads docs: pages

ci status coverage Checked with mypy Code style: black Conventional Commits

Automatically construct complex objects from simple Python types.

Highlights:

  • No boilerplate: terramare uses Python's standard type hints to determine how to construct instances of a class;
  • Format-agnostic: terramare takes simple Python types as input - pass it the output from json.load, toml.load, or yaml.load;
  • Non-invasive: terramare requires no modifications to your existing classes and functions beyond standard type hints;

Full documentation available at https://tomwatson1024.gitlab.io/terramare/.

Example

Deserializing a Simple Class

Consider the following simple class, defined using attrs for brevity:

>>> from typing import List
>>> import attr
>>> import terramare

>>> @attr.s(auto_attribs=True)
... class Example:
...     words: List[str]
...
...     def __str__(self):
...         return " ".join(self.words)

Deserializing an instance of the class from a dictionary is as simple as:

>>> print(terramare.structure({"words": ["hello", "world!"]}, into=Example))
hello world!

Deserializing a More Complex Class

Consider the Person class defined below:

>>> from typing import NamedTuple, NewType, Sequence
>>> import attr
>>> import terramare

    # `terramare` handles NamedTuples
>>> class Location(NamedTuple):
...     longitude: float
...     latitude: float


    # `terramare` handles NewType aliases
>>> JobTitle = NewType("JobTitle", str)


    # `terramare` handles custom classes [experimental]
>>> @terramare.auto
... class Occupation:
...     def __init__(self, title: JobTitle, field: str):
...         self.title = title
...         self.field = field
...
...     def __eq__(self, other):
...         if isinstance(other, self.__class__):
...             return vars(self) == vars(other)
...         return False
...
...     def __repr__(self):
...         return "Occupation('{0.title}', '{0.field}')".format(self)


>>> @attr.s(auto_attribs=True)
... class Person:
...     name: str
...     age: int
...     friends: Sequence[str]
...
...     # `terramare` handles complex member variable types
...     location: Location
...     occupation: Occupation

Again, deserialization is a single function call:

>>> terramare.structure(
...     {
...         "name": "Alice",
...         "age": 20,
...         "friends": ["Bob", "Charlie"],
...         "location": [51.5074, 0.1278],
...         "occupation": {"title": "programmer", "field": "technology"}
...     },
...     into=Person,
... )
Person(name='Alice', age=20, friends=['Bob', 'Charlie'], location=Location(longitude=51.5074, latitude=0.1278), occupation=Occupation('programmer', 'technology'))

Installation

Install using pip:

pip install terramare

Alternatives

Check out:

  • pydantic - "Data validation and settings management using python type annotations". A much more mature library also using Python's standard type hints for deserialization that requires a little more integration with your code;
  • schematics - "...combine types into structures, validate them, and transform the shapes of your data based on simple descriptions". Uses custom types instead of Python's standard type hints;
  • cerberus - "...provides powerful yet simple and lightweight data validation functionality out of the box and is designed to be easily extensible, allowing for custom validation". Schema validation that doesn't change the type of the primitive value.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

terramare-0.5.4.tar.gz (31.8 kB view details)

Uploaded Source

Built Distribution

terramare-0.5.4-py3-none-any.whl (38.3 kB view details)

Uploaded Python 3

File details

Details for the file terramare-0.5.4.tar.gz.

File metadata

  • Download URL: terramare-0.5.4.tar.gz
  • Upload date:
  • Size: 31.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.6.15 Linux/5.4.109+

File hashes

Hashes for terramare-0.5.4.tar.gz
Algorithm Hash digest
SHA256 70d86c9d4c597e980f1beef92d0ce89fc84fa35efffdfd1b076cd44fdfb086af
MD5 c42193b506388d8359c9bbec3acb6191
BLAKE2b-256 4acb6ef57c9e43c1d34cdd3d5b1f09f4e12704a16cf7b5f9cd09cdc81aa1826a

See more details on using hashes here.

File details

Details for the file terramare-0.5.4-py3-none-any.whl.

File metadata

  • Download URL: terramare-0.5.4-py3-none-any.whl
  • Upload date:
  • Size: 38.3 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: poetry/1.1.7 CPython/3.6.15 Linux/5.4.109+

File hashes

Hashes for terramare-0.5.4-py3-none-any.whl
Algorithm Hash digest
SHA256 b589fcd2d19f2737e60289008e10b0f40b368c419afd878ffccf95317a1f9485
MD5 af820bd06496d11caf9d4996a172c875
BLAKE2b-256 c6f28c7045b7fae83e1858162cb36ce2d1da8c5627d139a3947ae2e8cee28246

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page