Skip to main content

Performs OCR on a list of images using Tesseract and performs fuzzy string matching with a given list of strings.

Project description

Performs OCR on a list of images using Tesseract and performs fuzzy string matching with a given list of strings.

Tested against Windows 10 / Python 3.11 / Anaconda

pip install tesseractrapidfuzz

This function takes a path to the Tesseract OCR executable, a list of image paths or URLs,
a list of strings to compare against the recognized text, and optional fuzzy matching settings.
It returns a pandas DataFrame with OCR results and fuzzy matching scores.

Args:
	tesseract_path (str): Path to the Tesseract OCR executable.
	allpics (Union[list, tuple]): List of image paths, URLs, or other image data sources.
	strings_to_compare (Union[list, tuple, np.ndarray]): List of strings for fuzzy matching.
	compare_single_words (bool, optional): Enable fuzzy matching on individual words.
		Defaults to True.
	compare_grouped_words (bool, optional): Enable fuzzy matching on grouped words.
		Defaults to True.
	scorer_single_words (valid_scorer, optional): Fuzzy matching scorer for single words.
		Defaults to "WRatio".
	scorer_grouped_words (valid_scorer, optional): Fuzzy matching scorer for grouped words.
		Defaults to "WRatio".
	add_after_tesseract_path (str, optional): Additional arguments for Tesseract after
		the input image path. Defaults to an empty string.
	add_at_the_end (str, optional): Additional arguments to append to the Tesseract command.
		Defaults to "-l eng --psm 3".
	**kwargs: Additional keyword arguments to control the fuzzy matching process.

Returns:
	pd.DataFrame: A DataFrame with OCR results and fuzzy matching scores, including columns:
		- 'id_img': Image ID
		- 'id_word': Word ID within the image
		- 'ocr_result': Recognized text
		- 'start_x': Starting X-coordinate of the bounding box
		- 'end_x': Ending X-coordinate of the bounding box
		- 'start_y': Starting Y-coordinate of the bounding box
		- 'end_y': Ending Y-coordinate of the bounding box
		- 'conf': Confidence score
		- 'grouped_text': Grouped text for fuzzy matching
		- 'compared_grouped_words_similarity': Fuzzy matching score for grouped words
		- 'compared_grouped_words_index': Index of the matched string for grouped words
		- 'compared_grouped_words_value': Matched value for grouped words
		- 'compared_single_words_similarity': Fuzzy matching score for single words
		- 'compared_single_words_index': Index of the matched string for single words
		- 'compared_single_words_value': Matched value for single words

Example:
	import re
	from tesseractrapidfuzz import ocr_and_fuzzy_check
	df = ocr_and_fuzzy_check(
		tesseract_path=r"C:\Program Files\Tesseract-OCR\tesseract.exe",
		allpics=[
			"https://m.media-amazon.com/images/I/711y6oE2JrL._SL1500_.jpg",
			"https://m.media-amazon.com/images/I/61g+KBpG20L._SL1500_.jpg",
		],
		strings_to_compare=[
			"nonviolent",
			"communication",
			"emotional",
			"well-being",
			"terrible",
			"today.",
			"discover",
			"definitive",
			"guides",
			"transforming",
			"converting",
			"conflict",
			"meaningful",
			"connection,",
			"unveiling",
			"inspirational",
			"strategies",
			"engagement.",
			"martha",
			"williams",
			"nonviolent communication",
			"emotional well-being",
			"I had a terrible day at work today.",
			"wait till you",
			"heared about",
			"the art of nonviolent communication",
			"martha a. williams",
		],
		compare_single_words=True,
		compare_grouped_words=True,
		scorer_single_words="QRatio",
		scorer_grouped_words="WRatio",
		add_after_tesseract_path="",
		add_at_the_end="-l eng --psm 3",
		workers=5,
		processor=lambda x: re.sub(r"\W+", "", str(x).lower()),
	)
	print(df.to_string())
	# ...
	# 7        1        8       terrible      448    563      371    396    77       2875       505       383    115      25           2                                    | had a terrible                100.000000                    4            terrible                       90.0                     4                             terrible
	# 8        1        9            day      363    418      415    448    96       1815       390       431     55      33           3                                         day at work                 75.000000                    5              today.                       90.0                    22  I had a terrible day at work today.
	# 9        1       10             at      427    457      418    440    96        660       442       429     30      22           3                                         day at work                 50.000000                   18              martha                       90.0                    22  I had a terrible day at work today.
	# 10       1       11           work      466    540      415    440    96       1850       503       427     74      25           3                                         day at work                 33.333332                    6            discover                       90.0                    22  I had a terrible day at work today.
	# 11       1       12         today.      402    498      460    492    96       3072       450       476     96      32           4                                              today.                100.000000                    5              today.                      100.0                     5                               today.
	# 12       1       13           Wait      551    635      525    556    95       2604       593       540     84      31           5                                       Wait till you                 53.333332                   23       wait till you                      100.0                    23                        wait till you
	# 13       1       14           till      645    695      525    556    96       1550       670       540     50      31           5                                       Wait till you                 53.333332                   23       wait till you                      100.0                    23                        wait till you
	# 14       1       15            you      705    773      533    565    96       2176       739       549     68      32           5                                       Wait till you                 42.857143                   23       wait till you                      100.0                    23                        wait till you
	# 15       1       16           hear      562    645      579    610    95       2573       603       594     83      31           6                                          hear about                 53.333332                   24        heared about                       90.0                    24                         heared about
	# 16       1       17          about      663    767      579    610    96       3224       715       594    104      31           6                                          hear about                 62.500000                   24        heared about                       90.0                    24                         heared about
	# 17       2        1            ART       94    246      125    207    95      12464       170       166    152      82           7                                   ART OF NONVIOLENT                 66.666664                   18              martha                       90.0                     0                           nonviolent
	# 18       2        2             OF      275    376      125    207    95       8282       325       166    101      82           7                                   ART OF NONVIOLENT                 40.000000                   11            conflict                       90.0                     0                           nonviolent
	# 19       2        3     NONVIOLENT      407    907      125    206    96      40500       657       165    500      81           7                                   ART OF NONVIOLENT                100.000000                    0          nonviolent                       90.0                     0                           nonviolent
	# 20       2        4  COMMUNICATION      167    832      296    377    96      53865       499       336    665      81           8                                       COMMUNICATION                100.000000                    1       communication                      100.0                     1                        communication
	# 21       2        5            TAR      319    379      428    444    31        960       349       436     60      16           9                                                 TAR                 50.000000                    5              today.                       72.0                     9                         transforming
	# 22       2        6       DISCOVER      192    307      624    667    96       4945       249       645    115      43          10        DISCOVER THE DEFINITIVE GUIDES TO NONVIOLENT                100.000000                    6            discover                       90.0                     0                           nonviolent
	# 23       2        7            THE      320    360      624    667    96       1720       340       645     40      43          10        DISCOVER THE DEFINITIVE GUIDES TO NONVIOLENT                 44.444443                   18              martha                       90.0                     0                           nonviolent
	# 24       2        8     DEFINITIVE      374    507      624    667    96       5719       440       645    133      43          10        DISCOVER THE DEFINITIVE GUIDES TO NONVIOLENT                100.000000                    7          definitive                       90.0                     0                           nonviolent
	# 25       2        9         GUIDES      521    604      624    667    96       3569       562       645     83      43          10        DISCOVER THE DEFINITIVE GUIDES TO NONVIOLENT                100.000000                    8              guides                       90.0                     0                           nonviolent
	# 26       2       10             TO      618    645      628    654    96        702       631       641     27      26          10        DISCOVER THE DEFINITIVE GUIDES TO NONVIOLENT                 57.142857                    5              today.                       90.0                     0                           nonviolent
	# 27       2       11     NONVIOLENT      661    810      624    667    96       6407       735       645    149      43          10        DISCOVER THE DEFINITIVE GUIDES TO NONVIOLENT                100.000000                    0          nonviolent                       90.0                     0                           nonviolent
	# ...

Note:
	- The function combines OCR results with fuzzy string matching, allowing for versatile text analysis.
	- Valid_scoring options are: "WRatio", "QRatio", "ratio", "partial_ratio".

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tesseractrapidfuzz-0.10.tar.gz (26.9 kB view details)

Uploaded Source

Built Distribution

tesseractrapidfuzz-0.10-py3-none-any.whl (28.8 kB view details)

Uploaded Python 3

File details

Details for the file tesseractrapidfuzz-0.10.tar.gz.

File metadata

  • Download URL: tesseractrapidfuzz-0.10.tar.gz
  • Upload date:
  • Size: 26.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.2 CPython/3.11.5

File hashes

Hashes for tesseractrapidfuzz-0.10.tar.gz
Algorithm Hash digest
SHA256 494a5494477205b3a4f0c4b195fc34f182ab4d99a2ea74181cb276bb43df96dc
MD5 9ba07db2ba503d44c2146aab165d4504
BLAKE2b-256 184f4a726a3d943e608351a7d3e9cbfdf6a154eaf81d5e9ba2ea5316c5415c74

See more details on using hashes here.

File details

Details for the file tesseractrapidfuzz-0.10-py3-none-any.whl.

File metadata

File hashes

Hashes for tesseractrapidfuzz-0.10-py3-none-any.whl
Algorithm Hash digest
SHA256 50201d9f7f9837dd060552c2e60cb2d593422900e2ebcc7b30148d1fbedc72e9
MD5 cbdfe926706ddc7992e2309f954ce5ce
BLAKE2b-256 32c92156ab989edbbd8a2ccc54032afb6826827ba27412b36d26f344a1e7cac2

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page