Skip to main content

A simple, Pillow-friendly, Python wrapper around tesseract-ocr API using Cython

Project description

A simple, Pillow-friendly, wrapper around the tesseract-ocr API for Optical Character Recognition (OCR).

Github Actions build status Latest version on PyPi Supported python versions

tesserocr integrates directly with Tesseract’s C++ API using Cython which allows for a simple Pythonic and easy-to-read source code. It enables real concurrent execution when used with Python’s threading module by releasing the GIL while processing an image in tesseract.

tesserocr is designed to be Pillow-friendly but can also be used with image files instead.

Requirements

Requires libtesseract (>=3.04) and libleptonica (>=1.71).

On Debian/Ubuntu:

$ apt-get install tesseract-ocr libtesseract-dev libleptonica-dev pkg-config

You may need to manually compile tesseract for a more recent version. Note that you may need to update your LD_LIBRARY_PATH environment variable to point to the right library versions in case you have multiple tesseract/leptonica installations.

Cython (>=0.23) is required for building and optionally Pillow to support PIL.Image objects.

Installation

Linux and BSD/MacOS

$ pip install tesserocr

The setup script attempts to detect the include/library dirs (via pkg-config if available) but you can override them with your own parameters, e.g.:

$ CPPFLAGS=-I/usr/local/include pip install tesserocr

or

$ python setup.py build_ext -I/usr/local/include

Tested on Linux and BSD/MacOS

Windows

The proposed downloads consist of stand-alone packages containing all the Windows libraries needed for execution. This means that no additional installation of tesseract is required on your system.

The recommended method of installation is via Conda as described below.

Conda

You can use the simonflueckiger channel to install from Conda:

> conda install -c simonflueckiger tesserocr

Or alternatively the conda-forge channel:

> conda install -c conda-forge tesserocr

pip

Download the wheel file corresponding to your Windows platform and Python installation from simonflueckiger/tesserocr-windows_build/releases and install them via:

> pip install <package_name>.whl

Build from source

If you need Windows tessocr package and your Python version is not supported by above mentioned project, you can try to follow step by step instructions for Windows 64bit in Windows.build.md.

tessdata

You may need to point to the tessdata path if it cannot be detected automatically. This can be done by setting the TESSDATA_PREFIX environment variable or by passing the path to PyTessBaseAPI (e.g.: PyTessBaseAPI(path='/usr/share/tessdata')). The path should contain .traineddata files which can be found at https://github.com/tesseract-ocr/tessdata.

Make sure you have the correct version of traineddata for your tesseract --version.

You can list the current supported languages on your system using the get_languages function:

from tesserocr import get_languages

print(get_languages('/usr/share/tessdata'))  # or any other path that applies to your system

Usage

Initialize and re-use the tesseract API instance to score multiple images:

from tesserocr import PyTessBaseAPI

images = ['sample.jpg', 'sample2.jpg', 'sample3.jpg']

with PyTessBaseAPI() as api:
    for img in images:
        api.SetImageFile(img)
        print(api.GetUTF8Text())
        print(api.AllWordConfidences())
# api is automatically finalized when used in a with-statement (context manager).
# otherwise api.End() should be explicitly called when it's no longer needed.

PyTessBaseAPI exposes several tesseract API methods. Make sure you read their docstrings for more info.

Basic example using available helper functions:

import tesserocr
from PIL import Image

print(tesserocr.tesseract_version())  # print tesseract-ocr version
print(tesserocr.get_languages())  # prints tessdata path and list of available languages

image = Image.open('sample.jpg')
print(tesserocr.image_to_text(image))  # print ocr text from image
# or
print(tesserocr.file_to_text('sample.jpg'))

image_to_text and file_to_text can be used with threading to concurrently process multiple images which is highly efficient.

Advanced API Examples

GetComponentImages example:

from PIL import Image
from tesserocr import PyTessBaseAPI, RIL

image = Image.open('/usr/src/tesseract/testing/phototest.tif')
with PyTessBaseAPI() as api:
    api.SetImage(image)
    boxes = api.GetComponentImages(RIL.TEXTLINE, True)
    print('Found {} textline image components.'.format(len(boxes)))
    for i, (im, box, _, _) in enumerate(boxes):
        # im is a PIL image object
        # box is a dict with x, y, w and h keys
        api.SetRectangle(box['x'], box['y'], box['w'], box['h'])
        ocrResult = api.GetUTF8Text()
        conf = api.MeanTextConf()
        print(u"Box[{0}]: x={x}, y={y}, w={w}, h={h}, "
              "confidence: {1}, text: {2}".format(i, conf, ocrResult, **box))

Orientation and script detection (OSD):

from PIL import Image
from tesserocr import PyTessBaseAPI, PSM

with PyTessBaseAPI(psm=PSM.AUTO_OSD) as api:
    image = Image.open("/usr/src/tesseract/testing/eurotext.tif")
    api.SetImage(image)
    api.Recognize()

    it = api.AnalyseLayout()
    orientation, direction, order, deskew_angle = it.Orientation()
    print("Orientation: {:d}".format(orientation))
    print("WritingDirection: {:d}".format(direction))
    print("TextlineOrder: {:d}".format(order))
    print("Deskew angle: {:.4f}".format(deskew_angle))

or more simply with OSD_ONLY page segmentation mode:

from tesserocr import PyTessBaseAPI, PSM

with PyTessBaseAPI(psm=PSM.OSD_ONLY) as api:
    api.SetImageFile("/usr/src/tesseract/testing/eurotext.tif")

    os = api.DetectOS()
    print("Orientation: {orientation}\nOrientation confidence: {oconfidence}\n"
          "Script: {script}\nScript confidence: {sconfidence}".format(**os))

more human-readable info with tesseract 4+ (demonstrates LSTM engine usage):

from tesserocr import PyTessBaseAPI, PSM, OEM

with PyTessBaseAPI(psm=PSM.OSD_ONLY, oem=OEM.LSTM_ONLY) as api:
    api.SetImageFile("/usr/src/tesseract/testing/eurotext.tif")

    os = api.DetectOrientationScript()
    print("Orientation: {orient_deg}\nOrientation confidence: {orient_conf}\n"
          "Script: {script_name}\nScript confidence: {script_conf}".format(**os))

Iterator over the classifier choices for a single symbol:

from __future__ import print_function

from tesserocr import PyTessBaseAPI, RIL, iterate_level

with PyTessBaseAPI() as api:
    api.SetImageFile('/usr/src/tesseract/testing/phototest.tif')
    api.SetVariable("save_blob_choices", "T")
    api.SetRectangle(37, 228, 548, 31)
    api.Recognize()

    ri = api.GetIterator()
    level = RIL.SYMBOL
    for r in iterate_level(ri, level):
        symbol = r.GetUTF8Text(level)  # r == ri
        conf = r.Confidence(level)
        if symbol:
            print(u'symbol {}, conf: {}'.format(symbol, conf), end='')
        indent = False
        ci = r.GetChoiceIterator()
        for c in ci:
            if indent:
                print('\t\t ', end='')
            print('\t- ', end='')
            choice = c.GetUTF8Text()  # c == ci
            print(u'{} conf: {}'.format(choice, c.Confidence()))
            indent = True
        print('---------------------------------------------')

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tesserocr-2.6.3.tar.gz (59.2 kB view details)

Uploaded Source

Built Distributions

tesserocr-2.6.3-cp312-cp312-musllinux_1_1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.12 musllinux: musl 1.1+ x86-64

tesserocr-2.6.3-cp312-cp312-manylinux_2_28_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ x86-64

tesserocr-2.6.3-cp312-cp312-manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.12 manylinux: glibc 2.28+ ARM64

tesserocr-2.6.3-cp312-cp312-macosx_11_0_arm64.whl (200.6 kB view details)

Uploaded CPython 3.12 macOS 11.0+ ARM64

tesserocr-2.6.3-cp312-cp312-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.12 macOS 10.9+ x86-64

tesserocr-2.6.3-cp311-cp311-musllinux_1_1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tesserocr-2.6.3-cp311-cp311-manylinux_2_28_x86_64.whl (5.1 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ x86-64

tesserocr-2.6.3-cp311-cp311-manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.11 manylinux: glibc 2.28+ ARM64

tesserocr-2.6.3-cp311-cp311-macosx_11_0_arm64.whl (200.3 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tesserocr-2.6.3-cp311-cp311-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tesserocr-2.6.3-cp310-cp310-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tesserocr-2.6.3-cp310-cp310-manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ x86-64

tesserocr-2.6.3-cp310-cp310-manylinux_2_28_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.10 manylinux: glibc 2.28+ ARM64

tesserocr-2.6.3-cp310-cp310-macosx_11_0_arm64.whl (196.4 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tesserocr-2.6.3-cp310-cp310-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tesserocr-2.6.3-cp39-cp39-musllinux_1_1_x86_64.whl (5.2 MB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tesserocr-2.6.3-cp39-cp39-manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ x86-64

tesserocr-2.6.3-cp39-cp39-manylinux_2_28_aarch64.whl (4.7 MB view details)

Uploaded CPython 3.9 manylinux: glibc 2.28+ ARM64

tesserocr-2.6.3-cp39-cp39-macosx_11_0_arm64.whl (196.9 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tesserocr-2.6.3-cp39-cp39-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tesserocr-2.6.3-cp38-cp38-musllinux_1_1_x86_64.whl (5.3 MB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tesserocr-2.6.3-cp38-cp38-manylinux_2_28_x86_64.whl (5.0 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ x86-64

tesserocr-2.6.3-cp38-cp38-manylinux_2_28_aarch64.whl (4.8 MB view details)

Uploaded CPython 3.8 manylinux: glibc 2.28+ ARM64

tesserocr-2.6.3-cp38-cp38-macosx_11_0_arm64.whl (196.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tesserocr-2.6.3-cp38-cp38-macosx_10_9_x86_64.whl (4.2 MB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

File details

Details for the file tesserocr-2.6.3.tar.gz.

File metadata

  • Download URL: tesserocr-2.6.3.tar.gz
  • Upload date:
  • Size: 59.2 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/5.0.0 CPython/3.10.12

File hashes

Hashes for tesserocr-2.6.3.tar.gz
Algorithm Hash digest
SHA256 44c1c4ef7bdc286cfa144ce1a097e81c3329f4a43509bc8494a1ab852338c6e1
MD5 0e14652eade0a589d04de118a3b97db9
BLAKE2b-256 c2168890aa693a117b6e314690a2928e4c866f15dca4732713de6e6ae9dbfaba

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp312-cp312-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp312-cp312-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c340ffac0bf229a0b20e1821cfa47d5e39076a2c008f3323d8cfa14196856fe9
MD5 143f8f92e6e51bb43d26599a2407b821
BLAKE2b-256 1f398abd0f1d26be5d259affabd1bb84a035aa07db399a3269676cb5d3e1bfc9

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp312-cp312-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp312-cp312-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 73e5c82888a5c5512b43d422e3237cf550cdaf8f6d334504eb6a0e09be417709
MD5 527e6513280330216f31e40a03da85c5
BLAKE2b-256 24195ffa6fd6982a23c306683bf1c1db00d199f75446c6478461ac854e61ad2a

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp312-cp312-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp312-cp312-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 94608f7b18658158cc57b3407e48b73b8528d289281e171983db9d0693622028
MD5 e4c1d4fc9d48f84225271bca7bdda1e3
BLAKE2b-256 e60bf942d319e3007d1889623efd4f21f341679b980e1fb32cadcba18f3494a1

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp312-cp312-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp312-cp312-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 e9fbdd617dc8b3a6e558bd31d8a1360bbb27008a541d133e042f4fd113247bfa
MD5 949796627688afa3a2a1a710fc9e265f
BLAKE2b-256 50e3df417a59cb01c9a7b366a307390fd63cfcabd85a62d9e35aeeb4b15ed785

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp312-cp312-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp312-cp312-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 acb8e74536745607d64321ee777353f2cf241a7a8d224cf3ec033f84a0a44b9d
MD5 7b362a98414637a7b73667eff3e747bc
BLAKE2b-256 42b5cb43f63a5cfd2474d7a085e5ba1dcfa7dde8cda0a3a42f7011a9014f25a7

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 cd44654d788d8a5cae4cb74199f8e657d356d3afe40917f5e080ceb7e73f2925
MD5 a19284db8055e61f26da9eb3b321b4e7
BLAKE2b-256 b0e804f5a4dfa12b7306c4de3f8aa2b6d1f4c13e776cacfefc37cd16890b945e

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp311-cp311-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp311-cp311-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 4f7330017d6dbdfc7b2ef629c45731d5c0195b07efc4d9b298449cc35db80d5e
MD5 d0c6636f11d3f288f20391542c46503a
BLAKE2b-256 7f5967679fc8c7572495c2d1befd180971b292234b032d59f33292c9694affdc

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp311-cp311-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp311-cp311-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 0213ee8c727bb1c406bc4a6bd364f68f2365f45443099bf5716a61837dd805c0
MD5 2d8729fc0e8837dad492480c63140012
BLAKE2b-256 b5d3fec59931c2874bb5dc17443f5c766b2ab83ebf00407bab7a5f075c85c244

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ddcf671c69f7e09fb797aa4c304c02af002b91bde5cdd23a5deffb29d2c8e070
MD5 3b491cdf5cf6fb07cb15238bc87c5d55
BLAKE2b-256 597f58bd3414b7486b71a474f7dd386db45a6caed00f98fb12bea2e386e48d03

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 e654d576911e535f657b42d8e75081c8e16759c8b00afea0a1590ae1b5ba146d
MD5 c4bd881513ef307691ad12cb3e1052df
BLAKE2b-256 3d900c29a9d2518a5d5149175baf898e84724a65728e9ca3cd2ca75d6770a991

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9e5b71fbfbdf75d81eba35b7f58a640c9257ceb04195a137859d05888c539b2f
MD5 82acd69d6a05b82c49a2bbc86ea84481
BLAKE2b-256 1f0b03e10077b050c47c475a745a7b8aed1271fd75cbdaac083768812007c2a4

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp310-cp310-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp310-cp310-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 dfbeba226088f2b40aa306d0635727d2cc7062dbb59d13d824fe4d799be19109
MD5 50fab999660510a4cebc043af340d8b7
BLAKE2b-256 a34274d816fea76dcb0e230939476aad0ac024f19be7e011d53c2717d994319f

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp310-cp310-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp310-cp310-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 5ffa2240e6f01706c763f6970e3c401c2fc0021a7b59b33e44eb8ac7174f4844
MD5 eac5e17f00cf88ec34cddd0062ab653d
BLAKE2b-256 6a56e4b592ff6ebef85081fb26cfd82a4cff9eeb2a01048643397ea0eaf77da4

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 ce518b2d20f68ded658264a4fa4f003553efe07dc2e64a222269a42bbde6037c
MD5 e3a8cbb985a3a5dc97051e1a1c36b6d4
BLAKE2b-256 e2c89de11323cc19737002aaaf099c6a43d14b333bc1c1eee7ebf26802ffa9d2

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 08c10907db23cfd481c37343e07d6ce400822949d80144bbd1266aad4669b3c1
MD5 30d42c43a112c37b61a1c3b4231fe619
BLAKE2b-256 f5a574b6d234bebfc6309bceda83fcd6e15208322a2212168eac16480f640046

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 fa86f4d3f9046bb3bcb5e2889adbc66890311464db7e6e56a32a877affc229eb
MD5 bbc0c2ca602f36efd4e037ce6e571bc3
BLAKE2b-256 78040ce5f00c111326d905ce5f5e588c153ab1c61c29fb4437cfd789fb0a71b6

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp39-cp39-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp39-cp39-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 0e879b77de29e06417c7ee0a92beb5d6c7bae6026bc263cd44793c653c3027f6
MD5 22a10ffc37928cfdc97d083308e07fd0
BLAKE2b-256 563dadf373fdd4344c1832744e1e8f96a0096c1eda17679f57122345af8261c4

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp39-cp39-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp39-cp39-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 9369750160e1219137a75f96018573572a84dffaae131ecef0de17457b96cd70
MD5 d48b6c59d4c3f642cf15d999532e5215
BLAKE2b-256 69dd01c9fc21dac26e3e8c0d7a5910f5672e74bfc8b398774bed4f27283d672f

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 411e312e878031c976624d37bbf841197505ab5fb414fbfaa44901f615a42c86
MD5 bea193d814dfccd11f9a43ce0a079de4
BLAKE2b-256 b2b583589368cd6215974db4cf1cd47615210437af99680d080edb45b992498f

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 2352e854cbcd1841fee011d629420009ed520a258ab383cf10dc990cdcc66b5a
MD5 e5ed9eee21a9c0ad39a8b19178d993d6
BLAKE2b-256 0effb6e97c9c650664414520403e74fa2feffd3b1dfc23f7c76202f611a5fce7

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 047b2027e56817ffede63fcab24906d6020602b4498c3c8e3793263b6dd4324e
MD5 b0f977ff819e26ff6628c4aa40b0fd96
BLAKE2b-256 abab714e91d8fd66e98eb1a210b8937f032cc633111bb7c5cd68db976224e163

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp38-cp38-manylinux_2_28_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp38-cp38-manylinux_2_28_x86_64.whl
Algorithm Hash digest
SHA256 bbf0bb72d67876f93883b3d890a68dae78672d379b4f75eaa02e3fbc1d35813f
MD5 391158afbdab0c7cfbed02a0246a9214
BLAKE2b-256 8981af8b568678a9bd02b15bec2aa2da7a27f283df607e6720efe598adbf105a

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp38-cp38-manylinux_2_28_aarch64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp38-cp38-manylinux_2_28_aarch64.whl
Algorithm Hash digest
SHA256 4e0f0b9d5ce7627365f5b1ade940b6f672af47792b633991d866a490aa464c9f
MD5 8ab24d4537d925240c672736d51ec440
BLAKE2b-256 67d12f89d5b7d7596fb0e52176ff0a517d37efb0683a694ab005331c512b76c3

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 64ba306c21e9aeb776d8a6d65e5e584a43196216e8d475a11bb6c2216bfb38e8
MD5 17ef1d7545ef1fa955da52ef79d0af12
BLAKE2b-256 03c4ea2d259e99698f30b39ad8c3c39a6dbe369ad396add13a93034bd5b71b63

See more details on using hashes here.

File details

Details for the file tesserocr-2.6.3-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tesserocr-2.6.3-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 062a418612f49bfc9c9c4072a30c14c5e1f4ab682fdd605c0713a80afd05b62f
MD5 48780c557d8f5a0e9a69632ebd6d83b6
BLAKE2b-256 8309e36210d34fb6bad2a1f4fba25e35eb9e9d38dc60025a0d9b970852d5c9ab

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page