technical test for Earlybirds
Project description
===============
Test Earlybirds
===============
.. image:: https://img.shields.io/pypi/v/test_earlybirds.svg
:target: https://pypi.python.org/pypi/test_earlybirds
.. image:: https://img.shields.io/travis/simonmeoni/test_earlybirds.svg
:target: https://travis-ci.org/simonmeoni/test_earlybirds
.. image:: https://readthedocs.org/projects/test-earlybirds/badge/?version=latest
:target: https://test-earlybirds.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://pyup.io/repos/github/simonmeoni/test_earlybirds/shield.svg
:target: https://pyup.io/repos/github/simonmeoni/test_earlybirds/
:alt: Updates
technical test for Earlybirds
* Free software: Apache Software License 2.0
* Documentation: https://test-earlybirds.readthedocs.io.
Install
--------
To install the package : `pip3 install test-earlybirds`
CLI
--------
To launch the application with CLI, enter the following commands :
test_ealybirds --k 5 \
--output ./output/path/to/csv/result/file \
--learn ./output/path/to/csv/learning/file \
--evaluation ./output/path/to/csv/evaluation/file
here is a description of arguments :
- k: the number of the neighbors
- output: the output path
- learn: the input path of the train set
- evaluation: the input path of the evaluation set
- user_limit: limit the number of user to evaluate
Features
--------
* I tried to implement this method from this following article : https://www.itm-conferences.org/articles/itmconf/pdf/2017/04/itmconf_ita2017_04008.pdf
Credits
-------
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
=======
History
=======
0.1.0 (2019-04-14)
------------------
* First release on PyPI.
Test Earlybirds
===============
.. image:: https://img.shields.io/pypi/v/test_earlybirds.svg
:target: https://pypi.python.org/pypi/test_earlybirds
.. image:: https://img.shields.io/travis/simonmeoni/test_earlybirds.svg
:target: https://travis-ci.org/simonmeoni/test_earlybirds
.. image:: https://readthedocs.org/projects/test-earlybirds/badge/?version=latest
:target: https://test-earlybirds.readthedocs.io/en/latest/?badge=latest
:alt: Documentation Status
.. image:: https://pyup.io/repos/github/simonmeoni/test_earlybirds/shield.svg
:target: https://pyup.io/repos/github/simonmeoni/test_earlybirds/
:alt: Updates
technical test for Earlybirds
* Free software: Apache Software License 2.0
* Documentation: https://test-earlybirds.readthedocs.io.
Install
--------
To install the package : `pip3 install test-earlybirds`
CLI
--------
To launch the application with CLI, enter the following commands :
test_ealybirds --k 5 \
--output ./output/path/to/csv/result/file \
--learn ./output/path/to/csv/learning/file \
--evaluation ./output/path/to/csv/evaluation/file
here is a description of arguments :
- k: the number of the neighbors
- output: the output path
- learn: the input path of the train set
- evaluation: the input path of the evaluation set
- user_limit: limit the number of user to evaluate
Features
--------
* I tried to implement this method from this following article : https://www.itm-conferences.org/articles/itmconf/pdf/2017/04/itmconf_ita2017_04008.pdf
Credits
-------
This package was created with Cookiecutter_ and the `audreyr/cookiecutter-pypackage`_ project template.
.. _Cookiecutter: https://github.com/audreyr/cookiecutter
.. _`audreyr/cookiecutter-pypackage`: https://github.com/audreyr/cookiecutter-pypackage
=======
History
=======
0.1.0 (2019-04-14)
------------------
* First release on PyPI.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
test_earlybirds-0.1.5.tar.gz
(11.6 kB
view details)
File details
Details for the file test_earlybirds-0.1.5.tar.gz
.
File metadata
- Download URL: test_earlybirds-0.1.5.tar.gz
- Upload date:
- Size: 11.6 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.21.0 setuptools/41.0.0 requests-toolbelt/0.9.1 tqdm/4.31.1 CPython/3.6.3
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 1943546b818d667d5ec678364f77f99c69fee193cf7aa24b27761b889142c1fb |
|
MD5 | 62223423789eccf33b0c5aed7a7292ac |
|
BLAKE2b-256 | 7eab2c5f29b0c06eb9ca7169b494041ce753bcf0f9801dc787f31055cfce26f3 |