Skip to main content

tetgen python wrapper for points, PLCs and tetmesh inputs

Project description

tetgenpy

main PyPI version

tetgenpy is a python wrapper for Hang Si's TetGen - A Quality Tetrahedral Mesh Generator and a 3D Delaunay Triangulator. It helps to prepare various types of inputs - points, piecewise linear complexes (PLCs), and tetmesh - for tetrahedron mesh generation based on simple python types, such as list and numpy.ndarray.

Install

pip install tetgenpy

For current development version,

pip install git+https://github.com/tataratat/tetgenpy.git@main

Quick Start

Following is an example for tetrahedralization of a unit cube defined as PLCs. Alternatively, you could also use tetgenpy.PLC class to prepare TetgenIO.

import tetgenpy
import numpy as np

# tetrahedralize unit cube
# define points
points=[
    [0.0, 0.0, 0.0],
    [1.0, 0.0, 0.0],
    [0.0, 1.0, 0.0],
    [1.0, 1.0, 0.0],
    [0.0, 0.0, 1.0],
    [1.0, 0.0, 1.0],
    [0.0, 1.0, 1.0],
    [1.0, 1.0, 1.0],
]

# define facets - it can be list of polygons.
# here, they are hexa faces
facets = [
    [1, 0, 2, 3],
    [0, 1, 5, 4],
    [2, 0, 4, 6],
    [1, 3, 7, 5],
    [3, 2, 6, 7],
    [4, 5, 7, 6],
]

# prepare TetgenIO - input for tetgen
tetgen_in = tetgenpy.TetgenIO()

# set points, facets, and facet_markers.
# facet_markers can be useful for setting boundary conditions
tetgen_in.setup_plc(
    points=points,
    facets=facets,
    facet_markers=[[i] for i in range(1, len(facets) + 1)],
)

# tetgen's tetraheralize function with switches
tetgen_out = tetgenpy.tetrahedralize("qa.05", tetgen_in)

# unpack output
print(tetgen_out.points())
print(tetgen_out.tetrahedra())
print(tetgen_out.trifaces())
print(tetgen_out.trifacemarkers())

This package also provides access to tetgen's binary executable. Try:

$ tetgen -h

Dependencies

c++

python

build

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tetgenpy-0.0.1.tar.gz (24.7 kB view details)

Uploaded Source

Built Distributions

tetgenpy-0.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (446.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (435.3 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl (429.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

tetgenpy-0.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (447.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (435.4 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl (429.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

tetgenpy-0.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (446.6 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (434.7 kB view details)

Uploaded PyPy manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl (429.9 kB view details)

Uploaded PyPy macOS 10.9+ x86-64

tetgenpy-0.0.1-cp312-cp312-win_amd64.whl (350.3 kB view details)

Uploaded CPython 3.12 Windows x86-64

tetgenpy-0.0.1-cp312-cp312-win32.whl (315.7 kB view details)

Uploaded CPython 3.12 Windows x86

tetgenpy-0.0.1-cp311-cp311-win_amd64.whl (349.4 kB view details)

Uploaded CPython 3.11 Windows x86-64

tetgenpy-0.0.1-cp311-cp311-win32.whl (315.3 kB view details)

Uploaded CPython 3.11 Windows x86

tetgenpy-0.0.1-cp311-cp311-musllinux_1_1_x86_64.whl (974.0 kB view details)

Uploaded CPython 3.11 musllinux: musl 1.1+ x86-64

tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (447.2 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (508.5 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ppc64le

tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (435.0 kB view details)

Uploaded CPython 3.11 manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-cp311-cp311-macosx_11_0_arm64.whl (396.0 kB view details)

Uploaded CPython 3.11 macOS 11.0+ ARM64

tetgenpy-0.0.1-cp311-cp311-macosx_10_9_x86_64.whl (430.9 kB view details)

Uploaded CPython 3.11 macOS 10.9+ x86-64

tetgenpy-0.0.1-cp310-cp310-win_amd64.whl (349.5 kB view details)

Uploaded CPython 3.10 Windows x86-64

tetgenpy-0.0.1-cp310-cp310-win32.whl (315.1 kB view details)

Uploaded CPython 3.10 Windows x86

tetgenpy-0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl (974.1 kB view details)

Uploaded CPython 3.10 musllinux: musl 1.1+ x86-64

tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (447.3 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (508.5 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ppc64le

tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (434.9 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-cp310-cp310-macosx_11_0_arm64.whl (396.0 kB view details)

Uploaded CPython 3.10 macOS 11.0+ ARM64

tetgenpy-0.0.1-cp310-cp310-macosx_10_9_x86_64.whl (431.0 kB view details)

Uploaded CPython 3.10 macOS 10.9+ x86-64

tetgenpy-0.0.1-cp39-cp39-win_amd64.whl (349.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

tetgenpy-0.0.1-cp39-cp39-win32.whl (315.1 kB view details)

Uploaded CPython 3.9 Windows x86

tetgenpy-0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl (974.5 kB view details)

Uploaded CPython 3.9 musllinux: musl 1.1+ x86-64

tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (447.3 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (507.6 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ppc64le

tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (435.1 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-cp39-cp39-macosx_11_0_arm64.whl (396.0 kB view details)

Uploaded CPython 3.9 macOS 11.0+ ARM64

tetgenpy-0.0.1-cp39-cp39-macosx_10_9_x86_64.whl (431.1 kB view details)

Uploaded CPython 3.9 macOS 10.9+ x86-64

tetgenpy-0.0.1-cp38-cp38-win_amd64.whl (349.3 kB view details)

Uploaded CPython 3.8 Windows x86-64

tetgenpy-0.0.1-cp38-cp38-win32.whl (315.0 kB view details)

Uploaded CPython 3.8 Windows x86

tetgenpy-0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl (973.9 kB view details)

Uploaded CPython 3.8 musllinux: musl 1.1+ x86-64

tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (447.1 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (508.3 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ppc64le

tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (435.4 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-cp38-cp38-macosx_11_0_arm64.whl (396.0 kB view details)

Uploaded CPython 3.8 macOS 11.0+ ARM64

tetgenpy-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl (430.9 kB view details)

Uploaded CPython 3.8 macOS 10.9+ x86-64

tetgenpy-0.0.1-cp37-cp37m-win_amd64.whl (349.9 kB view details)

Uploaded CPython 3.7m Windows x86-64

tetgenpy-0.0.1-cp37-cp37m-win32.whl (316.2 kB view details)

Uploaded CPython 3.7m Windows x86

tetgenpy-0.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl (979.4 kB view details)

Uploaded CPython 3.7m musllinux: musl 1.1+ x86-64

tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (451.4 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (512.9 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ppc64le

tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (441.1 kB view details)

Uploaded CPython 3.7m manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl (429.7 kB view details)

Uploaded CPython 3.7m macOS 10.9+ x86-64

tetgenpy-0.0.1-cp36-cp36m-win_amd64.whl (349.9 kB view details)

Uploaded CPython 3.6m Windows x86-64

tetgenpy-0.0.1-cp36-cp36m-win32.whl (316.2 kB view details)

Uploaded CPython 3.6m Windows x86

tetgenpy-0.0.1-cp36-cp36m-musllinux_1_1_x86_64.whl (979.2 kB view details)

Uploaded CPython 3.6m musllinux: musl 1.1+ x86-64

tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl (451.4 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ x86-64

tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl (512.8 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ppc64le

tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl (441.1 kB view details)

Uploaded CPython 3.6m manylinux: glibc 2.17+ ARM64

tetgenpy-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl (429.7 kB view details)

Uploaded CPython 3.6m macOS 10.9+ x86-64

File details

Details for the file tetgenpy-0.0.1.tar.gz.

File metadata

  • Download URL: tetgenpy-0.0.1.tar.gz
  • Upload date:
  • Size: 24.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tetgenpy-0.0.1.tar.gz
Algorithm Hash digest
SHA256 e3fa38d37e78e6d32e31b3d636af162664110f27c1450d39bc23ab47ebc2a1bd
MD5 153973a83987db6f48dd6c4fd2f9b4a5
BLAKE2b-256 267c2efaa48012ee1a0e45d8ed4bbdcd3753c5939fbc3c9ca61ad066a0c94858

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp39-pypy39_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 0341763229e427c996c4042d9a310ead8d2f9167ed568ff357d59465430b3059
MD5 1ad835c9cfebea47e96a2010a54626f6
BLAKE2b-256 0f6f8031db6055a325b828b3462a5b762cca72d5c122fbff80b29ae18447ad81

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp39-pypy39_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 cc03a164d16dbbbedaddb6447cfc2eb3cb968a90fbe3f0d6a9d44c67cf1f7657
MD5 25e205585f60c22dc2a480f0c8beed99
BLAKE2b-256 35d3455b9ee4fca4bd2073ca2ba6914cc4e9ee1924553ee4237daec98f7ceee6

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp39-pypy39_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 9918d583f6decb3ebde3f5ddbdfa9bcfab8ab7d09068fe2960653f12363fdfc7
MD5 a09ef21566c8407867aabfbd9b51ada4
BLAKE2b-256 efe7db0b78d8314c29c1367cc29c929646590eb95142fd1be830171cc569f6c9

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp38-pypy38_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 167877c5b6cfdb11166712c45a9a66b1d3858c5c9f43df0ae9483f1a387041b6
MD5 f2e3bb349e642dd0ac72876c3189d51a
BLAKE2b-256 3b769f6f6809dca14337225d71b4f3d049ca2ed519d4d69aaa8b7c6ac50bddeb

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp38-pypy38_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 986e47635b7ccd81ef27c93c4ed64482de73fc57c54d549be5c710a2c7e0d767
MD5 3b58a845a803d212cd663f455f3434df
BLAKE2b-256 959f8a83060aa58e091acfbc94b7675c505633074ba9ba405521b0c8e76d68f0

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp38-pypy38_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 dd5a67d66608642c02e6463bb2373041bb6278e965096e732880529d2836d545
MD5 ea5c62338d3635f528c174ec6ad7d222
BLAKE2b-256 2f64798e77a50a2736ee589ad02f946b3f2c597295e8b56ed2f3ed294b5a3135

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp37-pypy37_pp73-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 4d0d41e004be4397354fa55d1ac8df2febd4a2a253f4017d308dc3cfe846f99c
MD5 e08db46a319f2fa806cc27d2499791ea
BLAKE2b-256 6f168502877896ab6b4562310247aecd3ffa604a773f26c7d5138eac8da1ed47

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp37-pypy37_pp73-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 5bfd2d0b55ac7b1cc959f5a9c5d53f1e9b658bdd1acab60040955fd7a5bf8d16
MD5 bdc83a5325f8eb13a3ad4fcc3d0c89d3
BLAKE2b-256 acc3619b278966d929941328a980f11bb7ae80e0fb108a8d7b728b69a4b36240

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-pp37-pypy37_pp73-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 1a1c0e86c779fba9d2590da4d31a87bf240129b3cdf981d37ccdf70144780889
MD5 f735b49ca4dc8f36d5d70538e2c321d0
BLAKE2b-256 631a0085dbb72363666f7eaf08e6f2d3de6ef51620c6efee0ef04efd722ed213

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp312-cp312-win_amd64.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp312-cp312-win_amd64.whl
  • Upload date:
  • Size: 350.3 kB
  • Tags: CPython 3.12, Windows x86-64
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tetgenpy-0.0.1-cp312-cp312-win_amd64.whl
Algorithm Hash digest
SHA256 659001cbc5c7eba9bdf93149ae316ddf2c9351f170a76b929b87b77f1dbdcaad
MD5 ebdad7676f5367bf31437d87a998b751
BLAKE2b-256 dc558bc85351758559ea2fdf6efb1dd8b550d67dceb2329e4aae136bdde6a2ff

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp312-cp312-win32.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp312-cp312-win32.whl
  • Upload date:
  • Size: 315.7 kB
  • Tags: CPython 3.12, Windows x86
  • Uploaded using Trusted Publishing? Yes
  • Uploaded via: twine/4.0.2 CPython/3.11.6

File hashes

Hashes for tetgenpy-0.0.1-cp312-cp312-win32.whl
Algorithm Hash digest
SHA256 a8cacee6c55bdb7ae0a01f26dd339743599323e07c27410a9cc17ccaadc4064d
MD5 1f62eb71f7fbe7e0a0d26adb54912c82
BLAKE2b-256 50a58690148eac3b5be9a028c85d46625517c94487ab2abd709417fa29c21f99

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp311-cp311-win_amd64.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp311-cp311-win_amd64.whl
  • Upload date:
  • Size: 349.4 kB
  • Tags: CPython 3.11, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp311-cp311-win_amd64.whl
Algorithm Hash digest
SHA256 6e4ae76e3aa6122b5904ba3bb7b74a5c27a589017154c0c72439d1b7b88cb081
MD5 49317b660fe56cd08757115372a7cbc8
BLAKE2b-256 c680b5f2ccaf5a715c9b5a1b5aabca087ebf398fc6b7f5114b8be98feb5dbe06

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp311-cp311-win32.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp311-cp311-win32.whl
  • Upload date:
  • Size: 315.3 kB
  • Tags: CPython 3.11, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp311-cp311-win32.whl
Algorithm Hash digest
SHA256 a88b55e71809d001610679d7985b520351d3f5f5ed2c8d250e247d21bfc42385
MD5 d842322b547f6959b2ebb860afc6c6ad
BLAKE2b-256 82eaa39791c38c51cee6cc1ca4f74617faed5f0a77903a561490f386e4d88f2c

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp311-cp311-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp311-cp311-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 5f2599df31761880754bb0ee95bd5e1e89c5be272690decadf5882e0c03c0dfa
MD5 1513f0b3662cfb4c7b9d61ecb67a70df
BLAKE2b-256 41c14d17484f582509d388caa7ffac1bae8ea4ef8670efc86ec39c05c331e83e

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 33f975b47032cb9e4e33bc5f7d729ceb3eab9b9577e7095639ff1b6b61244a8e
MD5 5873b194df2e5b9dbf3ccdc1c8bd2f87
BLAKE2b-256 74cb0aa436367a4a3c6208fb22c175c5e845d4d81636fa6648f698d2e09e6ca2

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 4ba54f07de1a385c3169989d7710d42a1751a7a674347a510f46f032e57e94f6
MD5 e996022e30c81c555736b88ed6aaa5b7
BLAKE2b-256 2ba316b4575c6fed6354e3124fd62daae149d2da2487fbb0a1f2d56a6606b9f9

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp311-cp311-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 2ba14d0bfc607c97ed5ae87e90d2cea8ec33c7eb4fa5c8a5d830ba75032d8b90
MD5 9b89d24534d455825cd23a318c5f01c3
BLAKE2b-256 53c803845e47f4aaf063176aab4d5bcaa13adc28a5879aa6dc15cc9bfd77c69c

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp311-cp311-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp311-cp311-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 b8f9496b32fb3efdac393946085afd12f5cf8fea27779ea770669aeb7d4298b5
MD5 5ba439ac638c36330efdec8c93eb0d45
BLAKE2b-256 6edb50ac9974fe1bb82ebca9ba744f2e6a030392c508cf85126881dd9ee2c908

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp311-cp311-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp311-cp311-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 8f7d31f73b70b9b6a3b167d767f65d3fb79ffd3735facfbba4ae5cd0c919d54b
MD5 888bbc3cbd132a5c55c0d532b2047b0f
BLAKE2b-256 ceec99b0680b6790f2afad1dd963fe03318c3998e54b9102f328a1ae4c794daf

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 349.5 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4a5a4f2e56a84fea8ce124e328789412c07bf28268f2d1bfb36a3b5df2607c78
MD5 4697aff762a8e857ef33a6ef7dea7bf6
BLAKE2b-256 9379bd5af38c0310554e71866a7851953b38ed7e25440b03e65285a9f52cbe6d

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp310-cp310-win32.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp310-cp310-win32.whl
  • Upload date:
  • Size: 315.1 kB
  • Tags: CPython 3.10, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp310-cp310-win32.whl
Algorithm Hash digest
SHA256 96e075c8e84929434db54da6fb89a1c935025ade3bbff0a4c13d182368d65938
MD5 2f0726c449193db0a1de8aeac48e66c8
BLAKE2b-256 ffd21a5f8acd5fdade62b6272bfe270e9871633c8390e61a0abe96d9e1fc50d1

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp310-cp310-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9e6283a33aaf85477f8298e3ef85daf9edcb3ee27a034e35281d5b554baaaa3c
MD5 286afd3fa4d6aecccbcc60c848dd6cc7
BLAKE2b-256 592d9598a9d2b575c930df92ab391dbb532eca13e844490ce76531e935a072fe

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 867061c28b1caafe0905b60a1cf500e79c072cc17f6f0a002cf688bf6eb804e6
MD5 5fc6273d964e8124534262f1d3d86560
BLAKE2b-256 e89ba7b84b667238452e1556f44a00c633c633621755c5db87f282cd98b0f543

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 478f772884f2ecb30f3f481c3644e99bc22f565c95ec6a9615d919239cdaaeec
MD5 d46aad0d2b294d441eeef08ffd84069b
BLAKE2b-256 e1fca3d9dae960350d83d4279d2a338c5aff81cceafc9b7491bd95a20aabf230

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp310-cp310-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 6e2db5492c0cba6ee23dcc4d909687e307493ef4406734d9734f57eecd9d0eaf
MD5 2da6e29ebb2412707449408e6deff48b
BLAKE2b-256 11daa2f2408e9e76f434376f0e77d325fc5687df1e2c800c0fa682f94e5673e1

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp310-cp310-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp310-cp310-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 a955ea9251b8e1106c9782acec947e3c8daa270471ea2c27234fc9005472891d
MD5 b4f2b22d48bfeb26f120641cc7956c54
BLAKE2b-256 1c014dec97a806984300f57573fc175ba6b9d480cd367971a0bc82db123be088

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp310-cp310-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp310-cp310-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 6856878d059bd72988136d5dfad4ec649edd6ae8c914438884c776e78e120d88
MD5 db539756577d9505c576738cf545b533
BLAKE2b-256 4050c860f7dd28b4ec204a6a80438326b6219b22bcc54a3d1ef748682a6bdb91

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 349.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 10958df423af74754c9c792ce35b2104a0cd21b5035410e3a0023d64c03ff8ba
MD5 d98d32f80573b8673a0f6a1c33154e21
BLAKE2b-256 29c2b61fdec7b2fe6add57aa6e0b052801f9c5b755d1643de9cc808688108afb

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp39-cp39-win32.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp39-cp39-win32.whl
  • Upload date:
  • Size: 315.1 kB
  • Tags: CPython 3.9, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp39-cp39-win32.whl
Algorithm Hash digest
SHA256 9887cfd88b5de20046c792e62d8db9c3bf5e30bff011b82838cee12228bc1185
MD5 96ffade0a7cb54b1f2340edddd02ba40
BLAKE2b-256 f42ee9283da09637fd75fddee8ab3cc1f445972a59d17a5c4ff0f2973e7982f9

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp39-cp39-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 642fd5bf4a6d5149f800d7d17865f15e6750dd8a4b93110d1ab15912fe265648
MD5 d6f4ac3e763b0d5a1ccd6d85d804f997
BLAKE2b-256 f6dd94dfba65789fecec4abd6e669f94a1d906f9b80c6a1119e51ef71df7e683

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 474eeb536298b1cf75af9468bda8d3c6c6e4c6edb1a36f02df5ff06c10d31128
MD5 5370e2ec6107e5b39570d7c893e9a494
BLAKE2b-256 8b0039cfb94e4fac84f442124271b9b6e325a7360f163391c34a043e70bae6a7

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 6178a5d3a2b5e1921aef779bad0e3a7255e128041ec9726ae382c4f56a2b1961
MD5 0b261d5c5020e0b3470ced5f6e31cfd6
BLAKE2b-256 67ec4b1e1c07a787fb0dfa34e9433c01263699a4e025230451f940822b35fcdc

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp39-cp39-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 88fce7b6be027aefbfaaf0ea6f6f4fc4b5da94e7da69c640f0aa2c5d83ffc08c
MD5 196e5edda76b7e69ed70eac935eda42c
BLAKE2b-256 ed743c98cf85ed13432564fd3c986c5bbca26a1fa0dc636a488cb745ff5fbbae

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp39-cp39-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp39-cp39-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 d8218e0073875382520f51e4c681a50720de0d5927d73802fe37a0f2451cf861
MD5 8702c01464e8053f030fcac37cc1c9a6
BLAKE2b-256 36d8f8751371fb7238125d38b6be82598e29c86754475934f01b91bcd13caf4c

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp39-cp39-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp39-cp39-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 25cb9434cb08136a28b2f559ffadb8aa4c67e54ef59ea38338b9475cf65a6dc0
MD5 17eef5b11376f6eb7466f3d83dce9158
BLAKE2b-256 4778c3fe4905040f8e2e4643f0eebe7a1edbe895cccc5437ccc52b63ebda051f

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 349.3 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 45cd1b64a1c52d38658b93127382164eaba4fa9f8fb12cfa7106a7767fc08249
MD5 f563f969a1f74dbb9190be0fc0e08a76
BLAKE2b-256 af7f7e3116cc8b74c98379406129ce5901b892a749466beaa12847f68b669a0d

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp38-cp38-win32.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp38-cp38-win32.whl
  • Upload date:
  • Size: 315.0 kB
  • Tags: CPython 3.8, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp38-cp38-win32.whl
Algorithm Hash digest
SHA256 5563f618c7d796e2e29401280ac3f212f1c8685409e8091ba1a068bc64a0c031
MD5 b72e32e800d1b0aed28618e466a74232
BLAKE2b-256 501dfbc14c1173e063ce8d619bf87bb203a14be03094cdf9dfc24b964162d913

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp38-cp38-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 01ef89c4ee7e7d4f3e1ce8a96492b826a4faa42336ebf3c18f47e55f9765e265
MD5 78ee5c8fbbf4f6a6a117928496fa9bd2
BLAKE2b-256 b8038d5c765b78932f049931f826b5ee4f148dee9a7558cf2a3c88a32111da4a

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 d2349f75639cb7d27cac6c496cdc3990ea7d979a1fb07f1710de74d288d74089
MD5 06a526908225dbef434ed995ad0fdbc0
BLAKE2b-256 264561f86495c372be04bfef864cb5bb751f96664ae494b7f3b37f3eb64141a1

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 f0622d6b43bb8f0ad615a26ffc3072f0283c7f5db78bd76bd57794a97929185d
MD5 ce6e16c36412db371741c6ab83547f6e
BLAKE2b-256 866addb4440a308279d76e7478d34fd9e4ef07d854c26935414d45473b236bde

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp38-cp38-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 97a8bb6ee6fcdbc1f938b8a76a10870aaffe95c8c041cdf180cc39ecee95c652
MD5 d1176e538149487a8aebb2b45cea0bb2
BLAKE2b-256 4a3181b75be6cd6c24c1dd5ccf3c7966ce1c10401d4bd96de17640f4c5fce602

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp38-cp38-macosx_11_0_arm64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp38-cp38-macosx_11_0_arm64.whl
Algorithm Hash digest
SHA256 10858cda0ab5d8aa1ba3e196e15285a307b3aecc15f1b190613b3c7b2475191f
MD5 031fab5394ffc6aa48a465d11644cfa5
BLAKE2b-256 9211081070f66818d2567119d0dc491541a99e3462b13fa4bb35c4a2a8a25c71

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp38-cp38-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 ac027b166df69b95b5dc0768179c113052d1d68c24256b6c72ca88787b189e67
MD5 87b9eeea072368a76b79eb0ed2b2cfe7
BLAKE2b-256 a97633fb7c7620faa635275aa7d56dcbe84aafc0836dd411a53380d5d28716e7

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp37-cp37m-win_amd64.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp37-cp37m-win_amd64.whl
  • Upload date:
  • Size: 349.9 kB
  • Tags: CPython 3.7m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp37-cp37m-win_amd64.whl
Algorithm Hash digest
SHA256 64b7e66b13d6b3bcee4c9a4b98ecb1182793e14d9738ab505bcfc33ad46c889e
MD5 b8cbe8b8b0b28161f8012c087e9c46c4
BLAKE2b-256 22c6d25f00402dcaffbf83a4299e8f5558aea71229f482a8eea3c42925eec9b8

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp37-cp37m-win32.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp37-cp37m-win32.whl
  • Upload date:
  • Size: 316.2 kB
  • Tags: CPython 3.7m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp37-cp37m-win32.whl
Algorithm Hash digest
SHA256 6477ebb67346deb48b9f05da1344cc6ed1bfe1e832093ae86b6d05118ee48db3
MD5 592db2e0c3dcf714a3db9b4bf707371e
BLAKE2b-256 9b77050e0e292d2d7988adfe6a56871f50b2355f8e87c5ebe5a2156dd15f2c59

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp37-cp37m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 c29d158273505fdac403d3757d878b2d99de812e2a3c4ae7cdbd18b4c22658b2
MD5 e4c5e4f674048cd321f8354da5da6be1
BLAKE2b-256 ac93d4313a8771dc8e0a55762f99e39db4e6d4b7d66edcb946b4beacc14446ea

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 898da435c52c624c228cb99f8e42197354f9df7da5b854cc8a9349144399139d
MD5 da255450113135545a74d79b6281387f
BLAKE2b-256 2cc69c903a601d33b8e261039a30c2d9f142f47a429d3fade30a9e8c9730008f

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 1721b099ff3d23829f91b1d02cc45cacaf020a28251b54d852f49f3b802d1893
MD5 8f7bd07aa0b0ae6d17745057f1c56068
BLAKE2b-256 7b3a72c3a92e8c66a80f8a230d22a1800443b55bbbcf4cb2f2a3dc80a2e51673

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp37-cp37m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 4c8ed8dbc72cb489806c01d1cc79d054b279fc15df854741aaddc5b1f8c50568
MD5 c6a6dfee11f4aee986f566a08a19db41
BLAKE2b-256 3b010ec6a69b328c0e2ebc8b0ba9550a679cd6379c83880d0fd5fd8e2555e391

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp37-cp37m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 3936833a7da88a15aea9e794375ff888742e04b027e91a2db3c0b8713baa0bd8
MD5 8a2f2cba5e7dd5535431eb8a367fa1b2
BLAKE2b-256 723ef069b0e64c10f06aefe3468d07f5ed42edb316fd1f996e6c8848f0d7c9a8

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp36-cp36m-win_amd64.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp36-cp36m-win_amd64.whl
  • Upload date:
  • Size: 349.9 kB
  • Tags: CPython 3.6m, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp36-cp36m-win_amd64.whl
Algorithm Hash digest
SHA256 3632cedea03bc287ad214a77158a21c7aea5fda27aa094b7c1cfe1f056704322
MD5 18b1dd78a1d69a2227ecd1f8659b1b2d
BLAKE2b-256 71190a86788a8d3545797e83d89e6164b18b4184d9557f237358ee250b6ef1f7

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp36-cp36m-win32.whl.

File metadata

  • Download URL: tetgenpy-0.0.1-cp36-cp36m-win32.whl
  • Upload date:
  • Size: 316.2 kB
  • Tags: CPython 3.6m, Windows x86
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.11.2

File hashes

Hashes for tetgenpy-0.0.1-cp36-cp36m-win32.whl
Algorithm Hash digest
SHA256 3123f4d49745a472ce3120ceb313ab522b1aaef9758e974f0a72720981fb33d8
MD5 abe12f87571aed74703b853e5a7dda8e
BLAKE2b-256 c7281752963f1ec2d06864a8e13936ce1214f91aca66354e0ecb15832e5b4146

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp36-cp36m-musllinux_1_1_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp36-cp36m-musllinux_1_1_x86_64.whl
Algorithm Hash digest
SHA256 9e56e47c49fa1901188bf8ca66d72ccf2a5cd1a7e9adbbc48ca225ca1e1a0f3f
MD5 54457a2d6fadc7be21ad1f11c0544014
BLAKE2b-256 2925ed2c8a33a9fefc3ead6aa6883487a6fb3c9bdeda2499cbdcea427707a4ed

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_x86_64.manylinux2014_x86_64.whl
Algorithm Hash digest
SHA256 49bfb6ed28f2e273e38a968c2110f55c1a99eb84849ce4804d05f582cb3c2c78
MD5 b6239582863fdadba812caec13c40495
BLAKE2b-256 d7a79af06b9a8efb4f241bbc6712a63268ff7965f3ad17cd9307bffe343f94f3

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_ppc64le.manylinux2014_ppc64le.whl
Algorithm Hash digest
SHA256 e2481b6e3b7c39f46ac3b1401650283d12693426f57b3a2c5e7b4eb1b12b5a48
MD5 f6ded8d7bf519c3360ddf1dcc8b41a89
BLAKE2b-256 1d79a7b3366713585a791139aafb7a3006ee0c859f371536f489e11a0879c726

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp36-cp36m-manylinux_2_17_aarch64.manylinux2014_aarch64.whl
Algorithm Hash digest
SHA256 9fe109c0fa0f2b4f11ec3fc6489559a0a47fbf6968d42d8ab01246cbb1a2d6d6
MD5 f8c621960011a46263cfe7584d4843c1
BLAKE2b-256 047b112e6a5c731adf7c8afa87f1038daaaea6b8a7b2363b9e4a4d6ef0fbf575

See more details on using hashes here.

File details

Details for the file tetgenpy-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl.

File metadata

File hashes

Hashes for tetgenpy-0.0.1-cp36-cp36m-macosx_10_9_x86_64.whl
Algorithm Hash digest
SHA256 0fd0bf3d027f6e0f7d02cece5b52e602738646b992211e505942aede5d1f240e
MD5 49a3093d83950929185bcb763056627f
BLAKE2b-256 abf9b8e4d05fe466ebd2c93bfc5994381ac03e403f41aabd34382584dc77e628

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page