This is text preprocessing package
Project description
Dependencies
pip install spacy==2.2.3
python -m spacy download en_core_web_sm
pip install beautifulsoup4==4.9.1
pip install textblob==0.15.3
INSTALLATION ''' pip install text_hammer
'''
How to use it for preprocessing
You have to have installed spacy and python3 to make it work. import text_hammer as th
def get_clean(x):
x = str(x).lower().replace('\\', '').replace('_', ' ')
x = th.cont_exp(x)
x = th.remove_emails(x)
x = th.remove_urls(x)
x = th.remove_html_tags(x)
x = th.remove_rt(x)
x = th.remove_accented_chars(x)
x = th.remove_special_chars(x)
x = re.sub("(.)\\1{2,}", "\\1", x)
return x
Use this if you want to use one by one
import pandas as pd
import numpy as np
import text_hammer as th
df = pd.read_csv('imdb_reviews.txt', sep = '\t', header = None)
df.columns = ['reviews', 'sentiment']
# These are series of preprocessing
df['reviews'] = df['reviews'].apply(lambda x: th.cont_exp(x)) #you're -> you are; i'm -> i am
df['reviews'] = df['reviews'].apply(lambda x: th.remove_emails(x))
df['reviews'] = df['reviews'].apply(lambda x: th.remove_html_tags(x))
df['reviews'] = df['reviews'].apply(lambda x: th.remove_urls(x))
df['reviews'] = df['reviews'].apply(lambda x: th.remove_special_chars(x))
df['reviews'] = df['reviews'].apply(lambda x: th.remove_accented_chars(x))
df['reviews'] = df['reviews'].apply(lambda x: th.make_base(x)) #ran -> run,
df['reviews'] = df['reviews'].apply(lambda x: th.spelling_correction(x).raw_sentences[0]) #seplling -> spelling
Note: Avoid to use make_base
and spelling_correction
for very large dataset otherwise it might take hours to process.
Extra
x = 'lllooooovvveeee youuuu'
x = re.sub("(.)\\1{2,}", "\\1", x)
print(x)
---
love you
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
text_hammer-0.1.5.tar.gz
(6.8 kB
view details)
Built Distribution
File details
Details for the file text_hammer-0.1.5.tar.gz
.
File metadata
- Download URL: text_hammer-0.1.5.tar.gz
- Upload date:
- Size: 6.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | dbf6e3b58f3c758cc91fb3776cf8b0980657f8ce7aceb7163e8e1c7e448273d5 |
|
MD5 | e1b4c158d5a254fbf9ddc9e6e9886b17 |
|
BLAKE2b-256 | 3267cb0e82a3065520e3bbf77a4ebcf29c8df0c913df0dd9affba1840b3138c4 |
File details
Details for the file text_hammer-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: text_hammer-0.1.5-py3-none-any.whl
- Upload date:
- Size: 7.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.3.0 pkginfo/1.7.0 requests/2.25.1 setuptools/47.1.0 requests-toolbelt/0.9.1 tqdm/4.59.0 CPython/3.7.9
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 6ad509e964d1a51e465d88a13e1dc77bf9636f1315daade5ad986d0ae5018e5b |
|
MD5 | 51fb4e884521033913b98f60bb4544de |
|
BLAKE2b-256 | 843a955cead96434a981761e4dbe5ca24241df8595f9459875ea1be7bf6eece7 |