Skip to main content

Extension of text_explainability for sensitivity testing (robustness, fairness)

Project description

T_xt Sensitivity logo

Sensitivity testing (fairness & robustness) for text machine learning models

PyPI Python_version Build_passing License Docs_passing Code style: black


Extension of text_explainability

Uses the generic architecture of text_explainability to also include tests of robustness (how generalizable the model is in production, e.g. ability to handle input characters, stability when adding typos, or the effect of adding random unrelated data) and fairness (if equal individuals are treated equally by the model, e.g. subgroup fairness on sex and nationality).

© Marcel Robeer, 2021

Quick tour

Robustness: test whether your model is able to handle different data types...

from text_sensitivity import RandomAscii, RandomEmojis, combine_generators

# Generate 10 strings with random ASCII characters
RandomAscii().generate_list(n=10)

# Generate 5 strings with random ASCII characters and emojis
combine_generators(RandomAscii(), RandomEmojis()).generate_list(n=5)

... whether your model performs equally for different entities ...

from text_sensitivity import RandomAddress, RandomEmail

# Random address of your current locale (default = 'nl')
RandomAddress(sep=', ').generate_list(n=5)

# Random e-mail addresses in Spanish ('es') and Portuguese ('pt'), and include from which country the e-mail is
RandomEmail(languages=['es', 'pt']).generate_list(n=10, attributes=True)

... and if it is robust under simple perturbations.

from text_sensitivity import compare_accuracy
from text_sensitivity.perturbation import to_upper, add_typos

# Is model accuracy equal when we change all sentences to uppercase?
compare_accuracy(env, model, to_upper)

# Is model accuracy equal when we add typos in words?
compare_accuracy(env, model, add_typos)

Fairness: see if performance is equal among subgroups.

from text_sensitivity import RandomName

# Generate random Dutch ('nl') and Russian ('ru') names, both 'male' and 'female' (+ return attributes)
RandomName(languages=['nl', 'ru'], sex=['male', 'female']).generate_list(n=10, attributes=True)

Installation

Method Instructions
pip Install from PyPI via pip3 install text_sensitivity.
Local Clone this repository and install via pip3 install -e . or locally run python3 setup.py install.

Documentation

Full documentation of the latest version is provided at https://marcelrobeer.github.io/text_sensitivity/.

Example usage

See example_usage.md to see an example of how the package can be used, or run the lines in example_usage.py to do explore it interactively.

Releases

text_explainability is officially released through PyPI.

See CHANGELOG.md for a full overview of the changes for each version.

Citation

@misc{text_sensitivity,
  title = {Python package text\_sensitivity},
  author = {Marcel Robeer},
  howpublished = {\url{https://git.science.uu.nl/m.j.robeer/text_sensitivity}},
  year = {2021}
}

Maintenance

Contributors

Todo

Tasks yet to be done:

  • Word-level perturbations
  • Add fairness-specific metrics:
    • Subgroup fairness
    • Counterfactual fairness
  • Add expected behavior
    • Robustness: equal to prior prediction, or in some cases might expect that it deviates
    • Fairness: may deviate from original prediction
  • Tests
    • Add tests for perturbations
    • Add tests for sensitivity testing schemes
  • Add visualization ability

Credits

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

text_sensitivity-0.2.2.tar.gz (38.9 kB view details)

Uploaded Source

Built Distribution

If you're not sure about the file name format, learn more about wheel file names.

text_sensitivity-0.2.2-py3-none-any.whl (41.5 kB view details)

Uploaded Python 3

File details

Details for the file text_sensitivity-0.2.2.tar.gz.

File metadata

  • Download URL: text_sensitivity-0.2.2.tar.gz
  • Upload date:
  • Size: 38.9 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.6

File hashes

Hashes for text_sensitivity-0.2.2.tar.gz
Algorithm Hash digest
SHA256 3f0bd759177720b06f3aec96ae897e073b05845df41920236216258818a6740f
MD5 826da6c7c5c1fe15425b6e6bece467e4
BLAKE2b-256 f3aab71c7d914f6b53c4f8ca9ef4258eedd3ca2d231eee8cc5c6545027fcaa99

See more details on using hashes here.

File details

Details for the file text_sensitivity-0.2.2-py3-none-any.whl.

File metadata

  • Download URL: text_sensitivity-0.2.2-py3-none-any.whl
  • Upload date:
  • Size: 41.5 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.3.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.57.0 CPython/3.9.6

File hashes

Hashes for text_sensitivity-0.2.2-py3-none-any.whl
Algorithm Hash digest
SHA256 ca5be9d24ee4cb437c61695a32880afb08ec3145c76bc52119716940850997bb
MD5 69a6f695e6b1e2983ee83a996623fc8b
BLAKE2b-256 61f369f30a5321c6c6642b068ce1d30ce2f4a18ab0d7fcdef26ea98a3aecd6d1

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Depot Continuous Integration Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page