Skip to main content

texta-crf-extractor

Project description

TEXTA CRF Extractor

Requirements

  • Python >= 3.8
  • SciPy installation for scikit-learn (requires BLAS & LAPACK system libraries).

Installation:

# For debian based systems (ex: debian:buster) to install binary dependencies.

apt-get update && apt-get install python3-scipy

# Install without MLP

pip install texta-crf-extractor

# Install with MLP 

pip install texta-crf-extractor[mlp]

Usage:

from texta_crf_extractor.crf_extractor import CRFExtractor
from texta_mlp.mlp import MLP

mlp = MLP(language_codes=["en"], default_language_code="en")

# prepare data
texts = ["foo", "bar"]
mlp_docs = [mlp.process(text) for text in texts]

# create extractor
extractor = CRFExtractor(mlp=mlp)

# train the CRF model
extractor.train(mlp_docs)

# tag something
extractor.tag("Tere maailm!")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

texta-crf-extractor-1.1.3.tar.gz (20.8 kB view details)

Uploaded Source

File details

Details for the file texta-crf-extractor-1.1.3.tar.gz.

File metadata

  • Download URL: texta-crf-extractor-1.1.3.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.8.13

File hashes

Hashes for texta-crf-extractor-1.1.3.tar.gz
Algorithm Hash digest
SHA256 6f7e3512ffde444cbe675c0eae720e3ccb1a8243ccbeabe8f5a06b37cf85b3e4
MD5 5517a50c86296a799d34beeffaea8d52
BLAKE2b-256 b6b7c4161ace4210abca05369c5594adfeff2ad35bbf45081ad5419eca8a72cd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page