texta-crf-extractor
Project description
TEXTA CRF Extractor
Requirements
- Python >= 3.8
- SciPy installation for scikit-learn (requires BLAS & LAPACK system libraries).
Installation:
# For debian based systems (ex: debian:buster) to install binary dependencies.
apt-get update && apt-get install python3-scipy
# Install without MLP
pip install texta-crf-extractor
# Install with MLP
pip install texta-crf-extractor[mlp]
Usage:
from texta_crf_extractor.crf_extractor import CRFExtractor
from texta_mlp.mlp import MLP
mlp = MLP(language_codes=["en"], default_language_code="en")
# prepare data
texts = ["foo", "bar"]
mlp_docs = [mlp.process(text) for text in texts]
# create extractor
extractor = CRFExtractor(mlp=mlp)
# train the CRF model
extractor.train(mlp_docs)
# tag something
extractor.tag("Tere maailm!")
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
texta-crf-extractor-2.0.0.tar.gz
(20.8 kB
view details)
File details
Details for the file texta-crf-extractor-2.0.0.tar.gz
.
File metadata
- Download URL: texta-crf-extractor-2.0.0.tar.gz
- Upload date:
- Size: 20.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.0 CPython/3.8.13
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 65959a8fa27750725efa87b629f0a418599e2f3ce7d73bf49b6958289a4e7790 |
|
MD5 | 43660968ecfb10220c9bc4d6de7b9b14 |
|
BLAKE2b-256 | 4e9a182585fdfe43f6d5ced180a9d7bd1e74bdb16c02ee04270d4a5731e07640 |