Skip to main content

texta-crf-extractor

Project description

TEXTA CRF Extractor

Requirements

  • Python >= 3.8
  • SciPy installation for scikit-learn (requires BLAS & LAPACK system libraries).

Installation:

# For debian based systems (ex: debian:buster) to install binary dependencies.

apt-get update && apt-get install python3-scipy

# Install without MLP

pip install texta-crf-extractor

# Install with MLP 

pip install texta-crf-extractor[mlp]

Usage:

from texta_crf_extractor.crf_extractor import CRFExtractor
from texta_mlp.mlp import MLP

mlp = MLP(language_codes=["en"], default_language_code="en")

# prepare data
texts = ["foo", "bar"]
mlp_docs = [mlp.process(text) for text in texts]

# create extractor
extractor = CRFExtractor(mlp=mlp)

# train the CRF model
extractor.train(mlp_docs)

# tag something
extractor.tag("Tere maailm!")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

texta-crf-extractor-2.0.0.tar.gz (20.8 kB view details)

Uploaded Source

File details

Details for the file texta-crf-extractor-2.0.0.tar.gz.

File metadata

  • Download URL: texta-crf-extractor-2.0.0.tar.gz
  • Upload date:
  • Size: 20.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.0 CPython/3.8.13

File hashes

Hashes for texta-crf-extractor-2.0.0.tar.gz
Algorithm Hash digest
SHA256 65959a8fa27750725efa87b629f0a418599e2f3ce7d73bf49b6958289a4e7790
MD5 43660968ecfb10220c9bc4d6de7b9b14
BLAKE2b-256 4e9a182585fdfe43f6d5ced180a9d7bd1e74bdb16c02ee04270d4a5731e07640

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page