Skip to main content

texta-crf-extractor

Project description

TEXTA CRF Extractor

Py3.8 Py3.9 Py3.10

Requirements

  • Python >= 3.8
  • SciPy installation for scikit-learn (requires BLAS & LAPACK system libraries).

Installation:

# For debian based systems (ex: debian:buster) to install binary dependencies.

apt-get update && apt-get install python3-scipy

# Install without MLP

pip install texta-crf-extractor

# Install with MLP 

pip install texta-crf-extractor[mlp]

Usage:

from texta_crf_extractor.crf_extractor import CRFExtractor
from texta_mlp.mlp import MLP

mlp = MLP(language_codes=["en"], default_language_code="en")

# prepare data
texts = ["foo", "bar"]
mlp_docs = [mlp.process(text) for text in texts]

# create extractor
extractor = CRFExtractor(mlp=mlp)

# train the CRF model
extractor.train(mlp_docs)

# tag something
extractor.tag("Tere maailm!")

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

texta-crf-extractor-2.1.0.tar.gz (20.5 kB view details)

Uploaded Source

File details

Details for the file texta-crf-extractor-2.1.0.tar.gz.

File metadata

  • Download URL: texta-crf-extractor-2.1.0.tar.gz
  • Upload date:
  • Size: 20.5 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.15.0 pkginfo/1.8.2 requests/2.25.1 setuptools/50.3.0 requests-toolbelt/0.9.1 tqdm/4.64.0 CPython/3.5.10

File hashes

Hashes for texta-crf-extractor-2.1.0.tar.gz
Algorithm Hash digest
SHA256 dae2e35fd4cc3fee675d5ef61599cc77b333a307369f3ef1be8b0d7e0c7170bf
MD5 6c4658ef111fa4713c4383916d2175f5
BLAKE2b-256 938b22b9709b6e1693a7fce70edf07fc8111292c2dd93134c49c38e9771ab5a0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page