German language support for TextBlob.
Project description
German language support for TextBlob by Steven Loria.
This python package is being developed as a TextBlob Language Extension. See Extension Guidelines for details.
Features
All directly accessible textblob_de classes (e.g. Sentence() or Word()) are initialized with default models for German
Properties or methods that do not yet work for German raise a NotImplementedError
German sentence boundary detection and tokenization (NLTKPunktTokenizer)
Consistent use of specified tokenizer for all tools (NLTKPunktTokenizer or PatternTokenizer)
Part-of-speech tagging (PatternTagger) with keyword include_punc=True (defaults to False)
Parsing (PatternParser) with all pattern keywords, plus pprint=True (defaults to False)
Noun Phrase Extraction (PatternParserNPExtractor)
Lemmatization (PatternParserLemmatizer)
Polarity detection (PatternAnalyzer) - Still EXPERIMENTAL, does not yet have information on subjectivity
NEW: Full pattern.text.de API support on Python3
Supports Python 2 and 3
See working features overview for details
Installing/Upgrading
$ pip install -U textblob-de $ python -m textblob.download_corpora
Or the latest development release (apparently this does not always work on Windows see issues #1744/5 for details):
$ pip install -U git+https://github.com/markuskiller/textblob-de.git@dev $ python -m textblob.download_corpora
Usage
>>> from textblob_de import TextBlobDE as TextBlob
>>> text = '''Heute ist der 3. Mai 2014 und Dr. Meier feiert seinen 43. Geburtstag.
Ich muss unbedingt daran denken, Mehl, usw. für einen Kuchen einzukaufen. Aber leider
habe ich nur noch EUR 18.50 in meiner Brieftasche.'''
>>> blob = TextBlob(text)
>>> blob.sentences
[Sentence("Heute ist der 3. Mai 2014 und Dr. Meier feiert seinen 43. Geburtstag."),
Sentence("Ich muss unbedingt daran denken, Mehl, usw. für einen Kuchen einzukaufen."),
Sentence("Aber leider habe ich nur noch EUR 18.50 in meiner Brieftasche.")]
>>> blob.tokens
WordList(['Heute', 'ist', 'der', '3.', 'Mai', ...]
>>> blob.tags
[('Heute', 'RB'), ('ist', 'VB'), ('der', 'DT'), ('3.', 'LS'), ('Mai', 'NN'),
('2014', 'CD'), ...]
# Default: Only noun_phrases that consist of two or more meaningful parts are displayed.
# Not perfect, but a start (relies heavily on parser accuracy)
>>> blob.noun_phrases
WordList(['Mai 2014', 'Dr. Meier', 'seinen 43. Geburtstag', 'Kuchen einzukaufen',
'meiner Brieftasche'])
>>> blob = TextBlob("Das Auto ist sehr schön.")
>>> blob.parse()
'Das/DT/B-NP/O Auto/NN/I-NP/O ist/VB/B-VP/O sehr/RB/B-ADJP/O schön/JJ/I-ADJP/O'
>>> from textblob_de import PatternParser
>>> blob = TextBlobDE("Das ist ein schönes Auto.", parser=PatternParser(pprint=True, lemmata=True))
>>> blob.parse()
WORD TAG CHUNK ROLE ID PNP LEMMA
Das DT - - - - das
ist VB VP - - - sein
ein DT NP - - - ein
schönes JJ NP ^ - - - schön
Auto NN NP ^ - - - auto
. . - - - - .
>>> from textblob_de import PatternTagger
>>> blob = TextBlob(text, pos_tagger=PatternTagger(include_punc=True))
[('Das', 'DT'), ('Auto', 'NN'), ('ist', 'VB'), ('sehr', 'RB'), ('schön', 'JJ'), ('.', '.')]
>>> blob = TextBlob("Das Auto ist sehr schön.")
>>> blob.sentiment
Sentiment(polarity=1.0, subjectivity=0.0)
>>> blob = TextBlob("Das ist ein hässliches Auto.")
>>> blob.sentiment
Sentiment(polarity=-1.0, subjectivity=0.0)
>>> blob.words.lemmatize()
WordList(['das', 'sein', 'ein', 'hässlich', 'Auto'])
>>> from textblob_de.lemmatizers import PatternParserLemmatizer
>>> _lemmatizer = PatternParserLemmatizer()
>>> _lemmatizer.lemmatize("Das ist ein hässliches Auto.")
[('das', 'DT'), ('sein', 'VB'), ('ein', 'DT'), ('hässlich', 'JJ'), ('Auto', 'NN')]
Access to pattern API in Python3
>>> from textblob_de.packages import pattern_de as pd
>>> print(pd.attributive("neugierig", gender=pd.FEMALE, role=pd.INDIRECT, article="die"))
neugierigen
Requirements
Python >= 2.6 or >= 3.3
TODO
TextBlob Extension: textblob-rftagger (wrapper class for RFTagger)
TextBlob Extension: textblob-cmd (command-line wrapper for TextBlob, basically TextBlob for files
TextBlob Extension: textblob-stanfordparser (wrapper class for StanfordParser via NLTK)
TextBlob Extension: textblob-berkeleyparser (wrapper class for BerkeleyParser)
TextBlob Extension: textblob-sent-align (sentence alignment for parallel TextBlobs)
TextBlob Extension: textblob-converters (various input and output conversions)
Additional PoS tagging options, e.g. NLTK tagging (NLTKTagger)
Improve noun phrase extraction (e.g. based on RFTagger output)
Improve sentiment analysis (find suitable subjectivity scores)
Improve functionality of Sentence() and Word() objects
Adapt more tests from textblob main package (esp. for TextBlobDE() in test_blob.py)
License
MIT licensed. See the bundled LICENSE file for more details.
Changelog
0.3.0 (14/08/2014)
Fixed Issue #5 (text + space + period)
0.2.9 (14/08/2014)
Fixed tokenization in PatternParser (if initialized manually, punctuation was not always separated from words)
Improved handling of empty strings (Issue #3) and of strings containing single punctuation marks (Issue #4) in PatternTagger and PatternParser
Added tests for empty strings and for strings containing single punctuation marks
0.2.8 (14/08/2014)
0.2.7 (13/08/2014)
0.2.6 (04/08/2014)
Fixed MANIFEST.in for package data in sdist
0.2.5 (04/08/2014)
sdist is non-functional as important files are missing due to a misconfiguration in MANIFEST.in - does not affect wheels
Major internal refactoring (but no backwards-incompatible API changes) with the aim of restoring complete compatibility to original pattern>=2.6 library on Python2
Separation of textblob and pattern code
On Python2 the vendorized version of pattern.text.de is only used, if original is not installed (same as nltk)
Made pattern.de.pprint function and all parser keywords accessible to customise parser output
Access to complete pattern.text.de API on Python2 and Python3 from textblob_de.packages import pattern_de as pd
tox passed on all major platforms (Win/Linux/OSX)
0.2.3 (26/07/2014)
Lemmatizer: PatternParserLemmatizer() extracts lemmata from Parser output
Improved polarity analysis through look-up of lemmatised word forms
0.2.2 (22/07/2014)
Option: Include punctuation in tags/pos_tags properties (b = TextBlobDE(text, tagger=PatternTagger(include_punc=True)))
Added BlobberDE() class initialized with German models
TextBlobDE(), Sentence(), WordList() and Word() classes are now all initialized with German models
Restored complete API compatibility with textblob.tokenizers module of textblob main package
0.2.1 (20/07/2014)
Noun Phrase Extraction: PatternParserNPExtractor() extracts NPs from Parser output
Refactored the way TextBlobDE() passes on arguments and keyword arguments to individual tools
Backwards-incompatible: Deprecate parser_show_lemmata=True keyword in TextBlob(). Use parser=PatternParser(lemmata=True) instead.
0.2.0 (18/07/2014)
vastly improved tokenization (NLTKPunktTokenizer and PatternTokenizer with tests)
consistent use of specified tokenizer for all tools
TextBlobDE with initialized default models for German
Parsing (PatternParser) plus test_parsers.py
EXPERIMENTAL implementation of Polarity detection (PatternAnalyzer)
first attempt at extracting German Polarity clues into de-sentiment.xml
tox tests passing for py26, py27, py33 and py34
0.1.3 (09/07/2014)
First release on PyPI
0.1.0 - 0.1.2 (09/07/2014)
First release on github
A number of experimental releases for testing purposes
Adapted version badges, tests & travis-ci config
Code adapted from sample extension textblob-fr
Language specific linguistic resources copied from pattern-de
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
Hashes for textblob_de-0.3.0-py2.py3-none-any.whl
Algorithm | Hash digest | |
---|---|---|
SHA256 | 43be093ce3795183cf02b985dd89eb7baeacb8df07d38df6414f4e51b638d090 |
|
MD5 | 727120c85b6ceeac28c02c9e64a6a3d4 |
|
BLAKE2b-256 | 029fa95c1a356186604e2416bdcf4e6c0841b7007464e9288afd88f1cf5b71b0 |