Skip to main content

Text classification datasets

Project description

Textbook

Universal NLU/NLI Dataset Processing Framework

It is designed with BERT in mind and currently support seven commonsense reasoning datsets(alphanli, hellaswag, physicaliqa, socialiqa, codah, cosmosqa, and commonsenseqa). It can be also applied to other datasets with few line of codes.

Architecture

Architecture Image

Dependency

conda install av -c conda-forge
pip install -r requirements.txt
pip install --editable .

# or

pip install textbook

Download raw datasets

./fetch.sh

It downloads alphanli, hellaswag, physicaliqa, socialiqa, codah, cosmosqa, and commonsenseqa from AWS in data_cache. In case you want to use something-something, pelase download the dataset from 20bn's website.

Usage

1. Load a dataset with parallel pandas

from transformers import BertTokenizer
from textbook import *
import modin.pandas as pd

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

d1 = MultiModalDataset(
    df=pd.read_json("data_cache/alphanli/train.jsonl", lines=True),
    template=lambda x: template_anli(x, LABEL2INT['anli']),
    renderers=[lambda x: renderer_text(x, tokenizer)],
)
bt1 = BatchTool(tokenizer, source="anli")
i1 = DataLoader(d1, batch_sampler=TokenBasedSampler(d1, batch_size=64), collate_fn=bt1.collate_fn)

2. Create a multitask dataset with multiple datasets

from transformers import BertTokenizer
from textbook import *
import modin.pandas as pd

tokenizer = BertTokenizer.from_pretrained('bert-base-cased')

# add additional tokens for each task as special `cls_token`
tokenizer.add_special_tokens({"additional_special_tokens": [
        "[ANLI]", "[HELLASWAG]"
]})

d1 = MultiModalDataset(
    df=pd.read_json("data_cache/alphanli/train.jsonl", lines=True),
    template=lambda x: template_anli(x, LABEL2INT['anli']),
    renderers=[lambda x: renderer_text(x, tokenizer, "[ANLI]")],
)
bt1 = BatchTool(tokenizer, source="anli")
i1 = DataLoader(d1, batch_sampler=TokenBasedSampler(d1, batch_size=64), collate_fn=bt1.collate_fn)

d2 = MultiModalDataset(
        df=pd.read_json("data_cache/hellaswag/train.jsonl", lines=True),
        template=lambda x: template_hellaswag(x, LABEL2INT['hellaswag']),
        renderers=[lambda x: renderer_text(x, tokenizer, "[HELLASWAG]")],
    )
bt2 = BatchTool(tokenizer, source="hellaswag")
i2 = DataLoader(d2, batch_sampler=TokenBasedSampler(d1, batch_size=64), collate_fn=bt2.collate_fn)

d = MultiTaskDataset([i1, i2], shuffle=False)

#! batch size must be 1 for multitaskdataset, because we already batched in each sub dataset.
for batch in DataLoader(d, batch_size=1, collate_fn=BatchTool.uncollate_fn):

    pass

    # {
    #     "source": "anli" or "hellaswag",
    #     "labels": ...,
    #     "input_ids": ...,
    #     "attentions": ...,
    #     "token_type_ids": ...,
    #     "images": ...,
    # }

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textbook-0.3.2.tar.gz (9.7 kB view details)

Uploaded Source

File details

Details for the file textbook-0.3.2.tar.gz.

File metadata

  • Download URL: textbook-0.3.2.tar.gz
  • Upload date:
  • Size: 9.7 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/1.13.0 pkginfo/1.5.0.1 requests/2.22.0 setuptools/41.0.1 requests-toolbelt/0.9.1 tqdm/4.37.0 CPython/3.7.3

File hashes

Hashes for textbook-0.3.2.tar.gz
Algorithm Hash digest
SHA256 24ba76a2276fe8280c3aa0cf16e4744beca484524ea574be528cfe8c7b57c189
MD5 604715132f324e720e726836c252111c
BLAKE2b-256 f51c63ccd191c3a6a7fd1f38582833c5888610511c12838bae13d852ae4f6060

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page