Skip to main content

A library for calculating a variety of features from text using spaCy

Project description

TextDescriptives

spacy github actions pytest github actions docs arXiv status

A Python library for calculating a large variety of metrics from text(s) using spaCy v.3 pipeline components and extensions. TextDescriptives can be used to calculate several descriptive statistics, readability metrics, and metrics related to dependency distance.

🔧 Installation

pip install textdescriptives

📰 News

  • Version 2.0 out with a new API, a new component, updated documentation, and tutorials! Components are now called by "textdescriptives/{metric_name}. New coherence component for calculating the semantic coherence between sentences. See the documentation for tutorials and more information!

⚡ Quick Start

Use extract_metrics to quickly extract your desired metrics. To see availalbe methods you can simply run:

import textdescriptives as td
td.get_valid_metrics()
# {'quality', 'readability', 'all', 'descriptive_stats', 'dependency_distance', 'pos_proportions', 'information_theory', 'coherence'}

Set the spacy_model parameter to specify which spaCy model to use, otherwise, TextDescriptives will auto-download an appropriate one based on lang. If lang is set, spacy_model is not necessary and vice versa.

Specify which metrics to extract in the metrics argument. None extracts all metrics.

import textdescriptives as td

text = "The world is changed. I feel it in the water. I feel it in the earth. I smell it in the air. Much that once was is lost, for none now live who remember it."
# will automatically download the relevant model (´en_core_web_lg´) and extract all metrics
df = td.extract_metrics(text=text, lang="en", metrics=None)

# specify spaCy model and which metrics to extract
df = td.extract_metrics(text=text, spacy_model="en_core_web_sm", metrics=["readability", "coherence"])

Usage with spaCy

To integrate with other spaCy pipelines, import the library and add the component(s) to your pipeline using the standard spaCy syntax. Available components are descriptive_stats, readability, dependency_distance, pos_proportions, coherence, and quality prefixed with textdescriptives/.

If you want to add all components you can use the shorthand textdescriptives/all.

import spacy
import textdescriptives as td
nlp = spacy.load("en_core_web_sm")
nlp.add_pipe("textdescriptives/all") 
doc = nlp("The world is changed. I feel it in the water. I feel it in the earth. I smell it in the air. Much that once was is lost, for none now live who remember it.")

# access some of the values
doc._.readability
doc._.token_length

TextDescriptives includes convenience functions for extracting metrics from a Doc to a Pandas DataFrame or a dictionary.

td.extract_dict(doc)
td.extract_df(doc)
text first_order_coherence second_order_coherence pos_prop_DET pos_prop_NOUN pos_prop_AUX pos_prop_VERB pos_prop_PUNCT pos_prop_PRON pos_prop_ADP pos_prop_ADV pos_prop_SCONJ flesch_reading_ease flesch_kincaid_grade smog gunning_fog automated_readability_index coleman_liau_index lix rix n_stop_words alpha_ratio mean_word_length doc_length proportion_ellipsis proportion_bullet_points duplicate_line_chr_fraction duplicate_paragraph_chr_fraction duplicate_5-gram_chr_fraction duplicate_6-gram_chr_fraction duplicate_7-gram_chr_fraction duplicate_8-gram_chr_fraction duplicate_9-gram_chr_fraction duplicate_10-gram_chr_fraction top_2-gram_chr_fraction top_3-gram_chr_fraction top_4-gram_chr_fraction symbol_#_to_word_ratio contains_lorem ipsum passed_quality_check dependency_distance_mean dependency_distance_std prop_adjacent_dependency_relation_mean prop_adjacent_dependency_relation_std token_length_mean token_length_median token_length_std sentence_length_mean sentence_length_median sentence_length_std syllables_per_token_mean syllables_per_token_median syllables_per_token_std n_tokens n_unique_tokens proportion_unique_tokens n_characters n_sentences
0 The world is changed(...) 0.633002 0.573323 0.097561 0.121951 0.0731707 0.170732 0.146341 0.195122 0.0731707 0.0731707 0.0487805 107.879 -0.0485714 5.68392 3.94286 -2.45429 -0.708571 12.7143 0.4 24 0.853659 2.95122 41 0 0 0 0 0.232258 0.232258 0 0 0 0 0.0580645 0.174194 0 0 False False 1.77524 0.553188 0.457143 0.0722806 3.28571 3 1.54127 7 6 3.09839 1.08571 1 0.368117 35 23 0.657143 121 5

📖 Documentation

TextDescriptives has a detailed documentation as well as a series of Jupyter notebook tutorials. All the tutorials are located in the docs/tutorials folder and can also be found on the documentation webiste.

Documentation
📚 Getting started Guides and instructions on how to use TextDescriptives and its features.
😎 Tutorials Detailed tutorials on how to make the most of TextDescriptives
📰 News and changelog New additions, changes and version history.
🎛 API References The detailed reference for TextDescriptive's API. Including function documentation
📄 Paper The preprint of the TextDescriptives paper.

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textdescriptives-2.3.0.tar.gz (1.3 MB view details)

Uploaded Source

Built Distribution

textdescriptives-2.3.0-py3-none-any.whl (250.9 kB view details)

Uploaded Python 3

File details

Details for the file textdescriptives-2.3.0.tar.gz.

File metadata

  • Download URL: textdescriptives-2.3.0.tar.gz
  • Upload date:
  • Size: 1.3 MB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/37.3 requests/2.28.2 requests-toolbelt/0.10.1 urllib3/1.26.14 tqdm/4.64.1 importlib-metadata/6.0.0 keyring/23.13.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.9.16

File hashes

Hashes for textdescriptives-2.3.0.tar.gz
Algorithm Hash digest
SHA256 21fd54645ff7b05787e0c0ce5a97a4826075c5f61a884c7fa464430d77e942b8
MD5 02210e41575aa15f4d5d9d7baddfd5ff
BLAKE2b-256 9f82094ffd9e00a51214c1093e8fab87fc882794947ff8ceaafc6f4d54a7f9e3

See more details on using hashes here.

File details

Details for the file textdescriptives-2.3.0-py3-none-any.whl.

File metadata

  • Download URL: textdescriptives-2.3.0-py3-none-any.whl
  • Upload date:
  • Size: 250.9 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.8.0 pkginfo/1.9.6 readme-renderer/37.3 requests/2.28.2 requests-toolbelt/0.10.1 urllib3/1.26.14 tqdm/4.64.1 importlib-metadata/6.0.0 keyring/23.13.1 rfc3986/2.0.0 colorama/0.4.6 CPython/3.9.16

File hashes

Hashes for textdescriptives-2.3.0-py3-none-any.whl
Algorithm Hash digest
SHA256 4f153f20072cc66e5755dced6240764fd9fd79777af033be10fbd3205440d046
MD5 fe34d8fc4c02ca7f2e9f18297ecde624
BLAKE2b-256 7d591d92ea558b22d790f03ddf515bb5ea8ca2580563af8213564ddc560f4cd0

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page