Let's go and play with text!
Project description
TextGo
TextGo is a python package to help you work with text data conveniently and efficiently. It's a powerful NLP tool, which provides various apis including text preprocessing, representation, similarity calculation, text search and classification. Besides, it supports both English and Chinese language.
Highlights
- Support both English and Chinese languages in text preprocessing
- Provide various text representation algorithms including BOW, TF-IDF, LDA, LSA, PCA, Word2Vec/GloVe/FastText, BERT...
- Support fast text search based on Faiss
- Support various text classification algorithms including FastText, TextCNN, TextRNN, TextRCNN, TextRCNN_Att, Bert, XLNet
- Very easy to use/employ in just a few lines of code
Installing
Install and update using pip:
pip install textgo
Note: successfully tested on python3.
Tips: the fasttext package needs to be installed manually as follows:
git clone https://github.com/facebookresearch/fastText.git
cd fastText-master
make
pip install .
Getting Started
1. Text preprocessing
Clean text
from textgo import Preprocess
# Chinese
tp1 = Preprocess(lang='zh')
texts1 = ["<text>自然语言处理是计算机科学领域与人工智能领域中的一个重要方向。<\text>", "??文本预处理~其实很简单!"]
ptexts1 = tp1.clean(texts1)
print(ptexts1)
Output: ['自然语言处理是计算机科学领域与人工智能领域中的一个重要方向', '文本预处理其实很简单']
# English
tp2 = Preprocess(lang='en')
texts2 = ["<text>Natural Language Processing, usually shortened as NLP, is a branch of artificial intelligence that deals with the interaction between computers and humans using the natural language<\text>"]
ptexts2 = tp2.clean(texts2)
print(ptexts2)
Output: ['natural language processing usually shortened as nlp is a branch of artificial intelligence that deals with the interaction between computers and humans using the natural language']
Tokenize and drop stopwords
# Chinese
tokens1 = tp1.tokenize(ptexts1)
print(tokens1)
Output: [['自然语言', '处理', '计算机科学', '领域', '人工智能', '领域', '中', '重要', '方向'], ['文本', '预处理', '其实', '很', '简单']]
# English
tokens2 = tp2.tokenize(ptexts2)
print(tokens2)
Output: [['natural', 'language', 'processing', 'usually', 'shortened', 'nlp', 'branch', 'artificial', 'intelligence', 'deals', 'interaction', 'computers', 'humans', 'using', 'natural', 'language']]
Preprocess (Clean + Tokenize + Remove stopwords + Join words)
# Chinese
ptexts1 = tp1.preprocess(texts1)
print(ptexts1)
Output: ['自然语言 处理 计算机科学 领域 人工智能 领域 中 重要 方向', '文本 预处理 其实 很 简单']
# English
ptexts2 = tp2.preprocess(texts2)
print(ptexts2)
Output: ['natural language processing usually shortened nlp branch artificial intelligence deals interaction computers humans using natural language']
2. Text representation
from textgo import Embeddings
petxts = ['自然语言 处理 计算机科学 领域 人工智能 领域 中 重要 方向', '文本 预处理 其实 很 简单']
emb = Embeddings()
# BOW
bow_emb = emb.bow(ptexts)
# TF-IDF
tfidf_emb = emb.tfidf(ptexts)
# LDA
lda_emb = emb.lda(ptexts, dim=2)
# LSA
lsa_emb = emb.lsa(petxts, dim=2)
# PCA
pca_emb = emb.pca(ptexts, dim=2)
# Word2Vec
w2v_emb = emb.word2vec(ptexts, method='word2vec', model_path='model/word2vec.bin')
# GloVe
glove_emb = emb.word2vec(ptexts, method='glove', model_path='model/glove.bin')
# FastText
ft_emb = emb.word2vec(ptexts, method='fasttext', model_path='model/fasttext.bin')
# BERT
bert_emb = emb.bert(ptexts, model_path='model/bert-base-chinese')
Tips: For methods like Word2Vec and BERT, you can load the model first and then get embeddings to avoid loading model repeatedly. Take BERT For example:
emb.load_model(method="bert", model_path='model/bert-base-chinese')
bert_emb1 = emb.bert(ptexts1)
bert_emb2 = emb.bert(ptexts2)
3. Similarity calculation
Support calculating similarity/distance between texts based on text representation mentioned above. For example, we can use bert sentence embeddings to compute cosine similarity between two sentences one by one.
from textgo import TextSim
texts1 = ["她的笑渐渐变少了。","最近天气晴朗适合出去玩!"]
texts2 = ["她变得越来越不开心了。","近来总是风雨交加没法外出!"]
ts = TextSim(lang='zh', method='bert', model_path='model/bert-base-chinese')
sim = ts.similarity(texts1, texts2, mutual=False)
print(sim)
Output: [0.9143135, 0.7350756]
Besides, we can also calculate similarity between each sentences among two datasets by setting mutual=True.
sim = ts.similarity(texts1, texts2, mutual=True)
print(sim)
Output: array([[0.9143138 , 0.772496 ], [0.704296 , 0.73507595]], dtype=float32)
4. Text search
It also supports searching query text in a large text database based on cosine similarity or euclidean distance. It provides two kinds of implementation: the normal one which is suitable for small dataset and the optimized one which is based on Faiss and suitable for large dataset.
from textgo import TextSim
# query texts
texts1 = ["A soccer game with multiple males playing."]
# database
texts2 = ["Some men are playing a sport.", "A man is driving down a lonely road.", "A happy woman in a fairy costume holds an umbrella."]
ts = TextSim(lang='en', method='word2vec', model_path='model/word2vec.bin')
Normal search
res = ts.get_similar_res(texts1, texts2, metric='cosine', threshold=0.5, topn=2)
print(res)
Output: [[(0, 'Some men are playing a sport.', 0.828474), (1, 'A man is driving down a lonely road.', 0.60927737)]]
Fast search
ts.build_index(texts2, metric='cosine')
res = ts.search(texts1, threshold=0.5, topn=2)
print(res)
Output: [[(0, 'Some men are playing a sport.', 0.828474), (1, 'A man is driving down a lonely road.', 0.60927737)]]
5. Text classification
Train a text classifier just in several lines. Models supported: FastText, TextCNN, TextRNN, TextRCNN, TextRCNN_Att, Bert, XLNet.
from textgo import Classifier
# Prepare data
X = [text1, text2, ... textn]
y = [label1, label2, ... labeln]
# load config
config_path = "./config.ini" # Include all model parameters
model_name = "Bert" # Supported models: FastText, TextCNN, TextRNN, TextRCNN, TextRCNN_Att, Bert, XLNet
args = load_config(config_path, model_name)
args['model_name'] = model_name
args['save_path'] = "output/%s"%model_name
# train
clf = Classifier(args)
clf.train(X_train, y_train, evaluate_test=False) # If evaluate_test=True, then it will split 10% for test dataset and evaluate on test dataset.
# predict
predclass = clf.predict(X_train)
Resources
1. Pretrained word embeddings
Chinese
- 各种中文词向量:https://github.com/Embedding/Chinese-Word-Vectors
- 腾讯AI Lab中文词向量:https://ai.tencent.com/ailab/nlp/en/embedding.html
English
- GloVe: https://nlp.stanford.edu/projects/glove/
- FastText: https://fasttext.cc/docs/en/english-vectors.html
- Word2Vec: https://drive.google.com/file/d/0B7XkCwpI5KDYNlNUTTlSS21pQmM/edit
2. Pretrained models
LICENSE
TextGo is MIT-licensed.
Project details
Release history Release notifications | RSS feed
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file textgo-1.4.tar.gz
.
File metadata
- Download URL: textgo-1.4.tar.gz
- Upload date:
- Size: 35.8 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | d818fda3fadd6a0f6e5d934e4af6da8f44fad799fb7fa875e32a11d74d5e447a |
|
MD5 | cbb85590701c39821671a999e75f0f12 |
|
BLAKE2b-256 | 2b8c85a45df58223c7c6dd12339f8b889c1a430e335f4459059b4fe9a61e4c8c |
File details
Details for the file textgo-1.4-py2.py3-none-any.whl
.
File metadata
- Download URL: textgo-1.4-py2.py3-none-any.whl
- Upload date:
- Size: 52.5 kB
- Tags: Python 2, Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/3.2.0 pkginfo/1.5.0.1 requests/2.23.0 setuptools/49.2.1 requests-toolbelt/0.9.1 tqdm/4.48.1 CPython/3.6.8
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 15539a704781355e2e70776956b183089fd0ff615fd7eefa00c9c6fc5bbff6db |
|
MD5 | f2b82ac398282c14c598d982088ea038 |
|
BLAKE2b-256 | 796cce4c7e42a8fbb232138c10304a5d3ca62f97df0caf48e0703084b020cc63 |