Skip to main content

Automated text analysis with networks

Project description

Launch on Binder CI status Documentation Status Install with conda Published in Journal of Open Source Software

textnets represents collections of texts as networks of documents and words. This provides novel possibilities for the visualization and analysis of texts.

Bipartite network graph

Network of U.S. Senators and words used in their official statements following the acquittal vote in the 2020 Senate impeachment trial (source).

The ideas underlying textnets are presented in this paper:

Christopher A. Bail, “Combining natural language processing and network analysis to examine how advocacy organizations stimulate conversation on social media,” Proceedings of the National Academy of Sciences of the United States of America 113, no. 42 (2016), 11823–11828, doi:10.1073/pnas.1607151113.

Initially begun as a Python implementation of Chris Bail’s textnets package for R, textnets now comprises several unique features for term extraction and weighing, visualization, and analysis.

textnets is free software under the terms of the GNU General Public License v3.

Features

textnets builds on spaCy, a state-of-the-art library for natural-language processing, and igraph for network analysis. It uses the Leiden algorithm for community detection, which is able to perform community detection on the bipartite (word–group) network.

textnets seamlessly integrates with Python’s excellent scientific stack. That means that you can use textnets to analyze and visualize your data in Jupyter notebooks!

textnets is easily installable using the conda and pip package managers. It requires Python 3.8 or higher.

Read the documentation to learn more about the package’s features.

Citation

Using textnets in a scholarly publication? Please cite this paper:

@article{Boy2020,
  author   = {John D. Boy},
  title    = {textnets},
  subtitle = {A {P}ython Package for Text Analysis with Networks},
  journal  = {Journal of Open Source Software},
  volume   = {5},
  number   = {54},
  pages    = {2594},
  year     = {2020},
  doi      = {10.21105/joss.02594},
}

Learn More

Documentation

https://textnets.readthedocs.io/

Repository

https://github.com/jboynyc/textnets

Issues & Ideas

https://github.com/jboynyc/textnets/issues

Conda-Forge

https://anaconda.org/conda-forge/textnets

PyPI

https://pypi.org/project/textnets/

FOSDEM ‘22

https://fosdem.org/2022/schedule/event/open_research_textnets/

DOI

10.21105/joss.02594

Archive

10.5281/zenodo.3866676

textnets logo

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textnets-0.8.3.tar.gz (130.8 kB view details)

Uploaded Source

Built Distributions

textnets-0.8.3-cp310-cp310-win_amd64.whl (131.7 kB view details)

Uploaded CPython 3.10 Windows x86-64

textnets-0.8.3-cp310-cp310-manylinux_2_31_x86_64.whl (128.1 kB view details)

Uploaded CPython 3.10 manylinux: glibc 2.31+ x86-64

textnets-0.8.3-cp310-cp310-macosx_11_0_x86_64.whl (112.1 kB view details)

Uploaded CPython 3.10 macOS 11.0+ x86-64

textnets-0.8.3-cp39-cp39-win_amd64.whl (131.7 kB view details)

Uploaded CPython 3.9 Windows x86-64

textnets-0.8.3-cp39-cp39-manylinux_2_31_x86_64.whl (127.9 kB view details)

Uploaded CPython 3.9 manylinux: glibc 2.31+ x86-64

textnets-0.8.3-cp39-cp39-macosx_10_16_x86_64.whl (106.2 kB view details)

Uploaded CPython 3.9 macOS 10.16+ x86-64

textnets-0.8.3-cp38-cp38-win_amd64.whl (131.7 kB view details)

Uploaded CPython 3.8 Windows x86-64

textnets-0.8.3-cp38-cp38-manylinux_2_31_x86_64.whl (128.8 kB view details)

Uploaded CPython 3.8 manylinux: glibc 2.31+ x86-64

textnets-0.8.3-cp38-cp38-macosx_10_16_x86_64.whl (106.2 kB view details)

Uploaded CPython 3.8 macOS 10.16+ x86-64

File details

Details for the file textnets-0.8.3.tar.gz.

File metadata

  • Download URL: textnets-0.8.3.tar.gz
  • Upload date:
  • Size: 130.8 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for textnets-0.8.3.tar.gz
Algorithm Hash digest
SHA256 9efc88c5eabfe6d1651cd510a22dc35e64ea1a722105fb59544144e278f13bf6
MD5 55bb3b6db216d7e5468416402b14f67e
BLAKE2b-256 685dc4c2fd3eb2219f2d7d831faa019e6678365e9990b5fbb3cf5a406175a6fe

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp310-cp310-win_amd64.whl.

File metadata

  • Download URL: textnets-0.8.3-cp310-cp310-win_amd64.whl
  • Upload date:
  • Size: 131.7 kB
  • Tags: CPython 3.10, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for textnets-0.8.3-cp310-cp310-win_amd64.whl
Algorithm Hash digest
SHA256 4d1736e9accaa733001967fa6ce9c4fe055542f6bae4e6cfebdf69a51d70ff32
MD5 686a660038bae33211c31b8c3b40b563
BLAKE2b-256 6deeb155d177d1171f573f4fcdde845826557b66b99c15bf1375ba0a6191225d

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp310-cp310-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for textnets-0.8.3-cp310-cp310-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 8ae024cb340010efb3cb995fba56da9a9795c9a85b8bc85a408bbaf3af91dc5c
MD5 ba8b00d0bbadf2aac8cca86954321d76
BLAKE2b-256 9fb6f62625b86e0c5aa9968a5017cc64ba0cc382eecbd05917d0e1e690121728

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp310-cp310-macosx_11_0_x86_64.whl.

File metadata

File hashes

Hashes for textnets-0.8.3-cp310-cp310-macosx_11_0_x86_64.whl
Algorithm Hash digest
SHA256 f382319654adfdaa79cc827cc89081f9edbbf88250458f8cd83204bc559ee83c
MD5 49da5d0c2e671feeb72b4aa82e9806c5
BLAKE2b-256 6d84494d941a4759efa891b28b89a7608d677157095e0d28713589b6e16b86e5

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp39-cp39-win_amd64.whl.

File metadata

  • Download URL: textnets-0.8.3-cp39-cp39-win_amd64.whl
  • Upload date:
  • Size: 131.7 kB
  • Tags: CPython 3.9, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for textnets-0.8.3-cp39-cp39-win_amd64.whl
Algorithm Hash digest
SHA256 0bcaae4a9564369162f89613e89680d5047b34906bb9ecc9e0454adffd623170
MD5 b9361ede2ab0c54f78d684c9abba21a4
BLAKE2b-256 823b1f4ff61861ceac16601bef8518d13ef080569c48ff0efc3c8b02981a5145

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp39-cp39-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for textnets-0.8.3-cp39-cp39-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 ea59c7e05c5fc45be6dd01e1ce8bdc65758ff38f1d504d0df0cb2944307e6b6d
MD5 2644537559556ff6c79efa981ee88e24
BLAKE2b-256 0acbe98411387f9b37d0b3779d24318f85f66917016ad03742f0e74c114c6109

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp39-cp39-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for textnets-0.8.3-cp39-cp39-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 766fba0785aa07034cd6335da4bc0c52a8289f4b27b3f49571c03cfc6c060131
MD5 078978b40548baf794e7093f2719b4ff
BLAKE2b-256 8cdc511ce93db6c7b1aea717224e626634ea2d564b9db5be1e59e2947bec0e11

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp38-cp38-win_amd64.whl.

File metadata

  • Download URL: textnets-0.8.3-cp38-cp38-win_amd64.whl
  • Upload date:
  • Size: 131.7 kB
  • Tags: CPython 3.8, Windows x86-64
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/4.0.1 CPython/3.9.13

File hashes

Hashes for textnets-0.8.3-cp38-cp38-win_amd64.whl
Algorithm Hash digest
SHA256 604e11030544a0a1fcbd525834e73fc1f75ea900fb607fbf1d43a8c6f8e6fde1
MD5 d1bb4468512b31a95fa48636a6546449
BLAKE2b-256 7266820bf7121bb6aa28cb1df6d8b77173beec24d58404f36fdb9802b92c6885

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp38-cp38-manylinux_2_31_x86_64.whl.

File metadata

File hashes

Hashes for textnets-0.8.3-cp38-cp38-manylinux_2_31_x86_64.whl
Algorithm Hash digest
SHA256 b3d957dc40efc63b16b93eba023c69edfefd051c8d7fe0b837e26d7017fb8998
MD5 1028456214dde1ca91400b1dab23c56b
BLAKE2b-256 815f63d4beb3df58d8ffe3417fa660b58b812b81dfe40fac6c7f9d566a67dfaa

See more details on using hashes here.

File details

Details for the file textnets-0.8.3-cp38-cp38-macosx_10_16_x86_64.whl.

File metadata

File hashes

Hashes for textnets-0.8.3-cp38-cp38-macosx_10_16_x86_64.whl
Algorithm Hash digest
SHA256 53639f41d8390d77df674561bd057b5aedbd9c15d338c827f057258efd6fefb1
MD5 a899a80f43bf54572c4eaa30995ad6f4
BLAKE2b-256 f5f9a28672b55acf8439f5d88227939a96e828580081519eb3e5f3453ab10aca

See more details on using hashes here.

Supported by

AWS Cloud computing and Security Sponsor Datadog Monitoring Fastly CDN Google Download Analytics Pingdom Monitoring Sentry Error logging StatusPage Status page