Skip to main content

TextRL - use reinforcement learning to adjust text generation results.

Project description

TextRL

Text generation with reinforcement learning using huggingface's transformer.
RLHF (Reinforcement Learning with Human Feedback) Implementation of ChatGPT for human interaction to improve generation model with reinforcement learning.

example

Introduction

This project is trying to use reinforcement learning to adjust text generation results. It is based on any text-generation model on huggingaface's transformer with PFRL and OpenAI GYM.

Key parameter for RL training

To finetune language model using RL, you basically need to modify the reward function:

from textrl import TextRLEnv
class MyRLEnv(TextRLEnv):
    def get_reward(self, input_item, predicted_list, finish):
        # input_item is the prompt input for the model, it will be one of your observation
        # an observation will be a list of sentence of eg: ['inputted sentence','xxx','yyy']
        # only the first input will feed to the model 'inputted sentence', and 
        # the remaining can be the reference for reward calculation
        
        # predicted_list is the list of predicted sentences of RL model generated,
        # it will be used for ranking reward calculation
        
        # finish is the end of sentences flags, get_reward will be called during generating each word, and 
        # when finish is True, it means the sentence is finished, it will use for sentence level reward calculation.
        
        # reward should be the list equal to the length of predicted_list
      return reward

parameters for sampling diverse example:

actor = TextRLActor(env, model, tokenizer,
                    act_deterministically=False,  # select the max probability token for each step or not
                    temperature=1,                # temperature for sampling
                    compare_sample=2,             # num of sample to rank
                    top_k=0,                      # top k sampling
                    top_p=1.0,                    # top p sampling
                    repetition_penalty=2)         # repetition penalty from CTRL paper (https://arxiv.org/abs/1909.05858)

Example 1

Run on gpt2: gpt2

import pfrl
from textrl import TextRLEnv, TextRLActor, train_agent_with_evaluation
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "gpt2"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")

model = model.cuda()

class MyRLEnv(TextRLEnv):
    def get_reward(self, input_item, predicted_list, finish):  # predicted will be the list of predicted token
        reward = [0]
        if finish:
            reward = [1] # calculate reward score base on predicted_list
        return reward

observaton_list = [["explain how attention work in seq2seq model"]]
env = TextRLEnv(model, tokenizer, observation_input=observaton_list,max_length=20, compare_sample=2)
actor = TextRLActor(env, model, tokenizer,
                    act_deterministically=False,
                    temperature=1,
                    compare_sample=2,
                    top_k=0,
                    top_p=1.0,
                    repetition_penalty=2)
agent = actor.agent_ppo(update_interval=2, minibatch_size=2, epochs=10)
print(actor.predict(observaton_list[0]))

train_agent_with_evaluation(
    agent,
    env,
    steps=100,
    eval_n_steps=None,
    eval_n_episodes=1,       
    eval_interval=2,
    outdir='bloom—test', 
)

print(actor.predict(observaton_list[0]))

Example 2

Run on 7B multi-lingual bloom: bigscience/bloomz-7b1-mt

import pfrl
from textrl import TextRLEnv, TextRLActor, train_agent_with_evaluation
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigscience/bloomz-7b1-mt"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")

model = model.cuda()

class MyRLEnv(TextRLEnv):
    def get_reward(self, input_item, predicted_list, finish):  # predicted will be the list of predicted token
        reward = [0]
        if finish:
            reward = [1] # calculate reward score base on predicted_list
        return reward

observaton_list = [["explain how attention work in seq2seq model"]]
env = TextRLEnv(model, tokenizer, observation_input=observaton_list,max_length=20, compare_sample=2)
actor = TextRLActor(env, model, tokenizer,
                    act_deterministically=False,
                    temperature=1,
                    compare_sample=2,
                    top_k=0,
                    top_p=1.0,
                    repetition_penalty=2)
agent = actor.agent_ppo(update_interval=2, minibatch_size=2, epochs=10)
print(actor.predict(observaton_list[0]))

train_agent_with_evaluation(
    agent,
    env,
    steps=100,
    eval_n_steps=None,
    eval_n_episodes=1,       
    eval_interval=2,
    outdir='bloom—test', 
)

print(actor.predict(observaton_list[0]))

Example 3

Training on 176B BLOOM model using petals.

Strongly recommend joining swarm to increase petals capacity

https://github.com/bigscience-workshop/petals

install pip install petals -U first

import pfrl
from textrl import TextRLEnv, TextRLActor, train_agent_with_evaluation
from transformers import BloomTokenizerFast 
from petals import DistributedBloomForCausalLM

MODEL_NAME = "bigscience/bloom-petals"
tokenizer = BloomTokenizerFast.from_pretrained(MODEL_NAME)
model = DistributedBloomForCausalLM.from_pretrained(MODEL_NAME)
model = model.cuda()

class MyRLEnv(TextRLEnv):
    def get_reward(self, input_item, predicted_list, finish):  # predicted will be the list of predicted token
        reward = [0]
        if finish:
            reward = [1] # calculate reward score base on predicted_list
        return reward

observaton_list = [["explain how attention work in seq2seq model"]]
env = TextRLEnv(model, tokenizer, observation_input=observaton_list,max_length=20, compare_sample=2)
actor = TextRLActor(env, model, tokenizer,
                    act_deterministically=False,
                    temperature=1,
                    compare_sample=2,
                    top_k=0,
                    top_p=1.0,
                   repetition_penalty=2)
agent = actor.agent_ppo(update_interval=2, minibatch_size=2, epochs=10)

print(actor.predict(observaton_list[0]))

train_agent_with_evaluation(
    agent,
    env,
    steps=100,
    eval_n_steps=None,
    eval_n_episodes=1,       
    eval_interval=2,
    outdir='bloom—test', 
)

print(actor.predict(observaton_list[0]))

Example 4

Controllable generation via RL to let Elon Musk speak ill of DOGE

before: i think dogecoin is a great idea.
after: i think dogecoin is a great idea, but I think it is a little overused.

Installation

pip install

pip install pfrl@git+https://github.com/voidful/pfrl.git
pip install textrl

Build from source

git clone and cd into this project.

pip install -e .

Usage

init agent and environment

import torch
from textrl import TextRLEnv, TextRLActor, train_agent_with_evaluation
from transformers import AutoModelForCausalLM, AutoTokenizer

checkpoint = "bigscience/bloomz-7b1-mt"

tokenizer = AutoTokenizer.from_pretrained(checkpoint)
model = AutoModelForCausalLM.from_pretrained(checkpoint, torch_dtype="auto", device_map="auto")

model = model.cuda()

setup reward function for environment

  • predicted(list[str]): will be the list of predicted token
  • finish(bool): it met the end of sentence or not
class MyRLEnv(TextRLEnv):
    def get_reward(self, input_item, predicted_list, finish):  # predicted will be the list of predicted token
        if finish:
            reward = [0] # calculate reward score base on predicted_list
        return reward

prepare for training

  • observaton_list should be a list of all possible input string for model training

    eg: observaton_list = [['testing sent 1'],['testing sent 2']]

env = MyRLEnv(model, tokenizer, observation_input=observaton_list)
actor = TextRLActor(env, model, tokenizer)
agent = actor.agent_ppo(update_interval=10, minibatch_size=2000, epochs=20)

Train

n_episodes = 1000
max_episode_len = 200  # max sentence length

for i in range(1, n_episodes + 1):
    obs = env.reset()
    R = 0
    t = 0
    while True:
        action = agent.act(obs)
        obs, reward, done, pred = env.step(action)
        R += reward
        t += 1
        reset = t == max_episode_len
        agent.observe(obs, reward, done, reset)
        if done or reset:
            break
    if i % 10 == 0:
        print('episode:', i, 'R:', R)
    if i % 50 == 0:
        print('statistics:', agent.get_statistics())
print('Finished.')

another way to train

import logging
import sys

logging.basicConfig(level=logging.INFO, stream=sys.stdout, format='')

train_agent_with_evaluation(
    agent,
    env,
    steps=1000,
    eval_n_steps=None,
    eval_n_episodes=1500,
    train_max_episode_len=50,
    eval_interval=10000,
    outdir='somewhere',
)

prediction

agent.load("somewhere/best")  # loading the best model
actor.predict("input text")

dump trained model to huggingface's model

textrl-dump --model ./model_path_before_rl --rl ./rl_path --dump ./output_dir

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

textrl-0.2.10.tar.gz (16.0 kB view hashes)

Uploaded Source

Built Distribution

textrl-0.2.10-py3-none-any.whl (12.8 kB view hashes)

Uploaded Python 3

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page