A Python text analysis library for relevance and subtheme detection
Project description
TextScope 📖🔍
TextScope is a Python package that helps determine the relevance of a text to predefined profiles of interest and aligns it with specific subthemes. The package is designed to be flexible and configurable via a config.yaml
file. Features:
- Multilingual support 🗣️
- Powered by Transformers techonology 🤖
- Easily customizable for other profiles of interest ⚙️🔧
Installation
You can install TextScope using pip (🐍):
pip install textscope
Configuration
Default Configuration
By default, TextScope looks for a configuration file included in the package. You can create your own configuration file if you need to customize the profiles and subthemes. The default config.yaml included with the package provides the following profiles:
- gambling 🎲 in Spanish. Subthemes are DSM-V questionnaire items.
- mental_health 🧠 in English. Subthemes are BDI-II questionnaire items.
- climat 🌦️ in French. Subthemes related to climate change phenomena.
You can find more info in the textscope/data/config.yaml
file.
Custom Configuration
If you want to use a custom configuration file, you can specify the file path in your code:
from textscope.config_loader import load_config
# Load custom configuration
load_config('path/to/custom_config.yaml')
Example of custom config.yaml
:
PROFILES:
ai: ['technology', 'AI', 'machine learning', 'software']
SUBTHEMES:
ai: ['Natural Language Processing', 'Transfomer-based architecture', 'Computer Vision and multimodality']
Relevance Analysis
To determine if a text is relevant to any of the predefined profiles. One possible application of this method would be to filter out texts that are not highly relevant to the topic. Future versions of the TextScope will include a filter_corpus method that will remove the out-of-scope texts from a corpus (currently under development).
Default Configuration
from textscope.relevance_analyzer import RelevanceAnalyzer
text = "La adicción al juego es una enfermedad, pero es la única enfermedad que te puede hacer rico. La artritis no te va a hacer ganar un centavo"
profile = 'gambling'
analyzer = RelevanceAnalyzer()
rel_score = analyzer.analyze(text, profile)
print(rel_score) ## it will return a high score of relevance for the profile (> 86.)
Custom Configuration
from textscope.config_loader import load_config
from textscope.relevance_analyzer import RelevanceAnalyzer
load_config('path/to/custom_config.yaml')
# Realizar un análisis de relevancia
text = "Transformers based architecture is the sota in NLP."
profile = 'ai'
relevance_analyzer = RelevanceAnalyzer()
is_relevant = relevance_analyzer.analyze(text, profile)
print(rel_score) ## it will return a high score of relevance for the profile (> 86.)
Subtheme Analysis
This class allows to test whether a text discuss or not the subthemes defined in the profile.
Default Configuration
from textscope.subtheme_analyzer import SubthemeAnalyzer
text = 'Perdía el raciocinio apostando cantidades cada vez mayores para sentir estímulos más intensos. He mentido a mi familia.'
profile = 'gambling'
analyzer = SubthemeAnalyzer()
subth_pres = analyzer.analyze_bin(text, profile) # default threshold set to 86.
print(subth_pres) # For this sentence and subthemes it should output [0, 1, 0, 0, 0, 1, 0, 0, 0]
Custom Configuration
from textscope.config_loader import load_config
from textscope.subtheme_analyzer import SubthemeAnalyzer
load_config('path/to/custom_config.yaml')
text = "Transformer-based architecture is the state-of-the-art in NLP."
profile = 'ai'
analyzer = SubthemeAnalyzer()
subth_pres = analyzer.analyze_bin(text, profile) # default threshold set to 86.
print(subth_pres) # For this sentence and subthemes it should output [1,1,0]
If we do not want a binary output, we also provide a method that outputs the similarity:
from textscope.subtheme_analyzer import SubthemeAnalyzer
text = 'Perdía el raciocinio apostando cantidades cada vez mayores para sentir estímulos más intensos. He mentido a mi familia.'
profile = 'gambling'
analyzer = SubthemeAnalyzer()
subth_scoring = analyzer.analyze(text, profile) # default threshold set to 86.
print(subth_scoring) # For this sentence and subthemes it should output [82.50125885009766, 87.5889663696289, 82.89108276367188, 81.27981567382812, 84.01229095458984, 86.728271484375, 82.63910675048828, 82.18984985351562, 82.15728759765625]
Testing
To run tests for TextScope, use the following command:
pytest -s tests/
Collaborate
This is an under development project, PR are welcome and feel free to contact me at marcosfernandez.pichel@usc.es
.
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distribution
Built Distribution
File details
Details for the file textscope-0.1.5.tar.gz
.
File metadata
- Download URL: textscope-0.1.5.tar.gz
- Upload date:
- Size: 20.0 kB
- Tags: Source
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 61abc2cd9160b94afa8a9d5f22dae6bb252985c59bc4c59ab4724780f06f6473 |
|
MD5 | ddcf308f9a392910d90e813cf36bec0d |
|
BLAKE2b-256 | 4c9d82f2edd16646ffdda76ea2f8270afbb3379d86ced6756791d58305380bdd |
File details
Details for the file textscope-0.1.5-py3-none-any.whl
.
File metadata
- Download URL: textscope-0.1.5-py3-none-any.whl
- Upload date:
- Size: 21.6 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
- Uploaded via: twine/4.0.2 CPython/3.9.7
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 9307814935250bba50b3a02fdf6a503cf33e854f0c1c2f2d9a4f794c4dae7e66 |
|
MD5 | 286b494715f54ea89e35e011a43118cc |
|
BLAKE2b-256 | 65da53e3a92fa32bdf8fee6332af6ea8d44679cc9876961f44f8ef8923fe2907 |