Skip to main content

TF-Agents: A Reinforcement Learning Library for TensorFlow

Project description

TF-Agents: A reliable, scalable and easy to use TensorFlow library for Contextual Bandits and Reinforcement Learning.

PyPI tf-agents

TF-Agents makes implementing, deploying, and testing new Bandits and RL algorithms easier. It provides well tested and modular components that can be modified and extended. It enables fast code iteration, with good test integration and benchmarking.

To get started, we recommend checking out one of our Colab tutorials. If you need an intro to RL (or a quick recap), start here. Otherwise, check out our DQN tutorial to get an agent up and running in the Cartpole environment. API documentation for the current stable release is on tensorflow.org.

TF-Agents is under active development and interfaces may change at any time. Feedback and comments are welcome.

Table of contents

Agents
Tutorials
Multi-Armed Bandits
Examples
Installation
Contributing
Releases
Principles
Citation
Disclaimer

Agents

In TF-Agents, the core elements of RL algorithms are implemented as Agents. An agent encompasses two main responsibilities: defining a Policy to interact with the Environment, and how to learn/train that Policy from collected experience.

Currently the following algorithms are available under TF-Agents:

Tutorials

See docs/tutorials/ for tutorials on the major components provided.

Multi-Armed Bandits

The TF-Agents library contains also a comprehensive Multi-Armed Bandits suite, including Bandits environments and agents. RL agents can also be used on Bandit environments. For a tutorial, see tf_agents/g3doc/tutorials/bandits_tutorial.ipynb. For ready-to-run examples, see tf_agents/bandits/agents/examples/.

Examples

End-to-end examples training agents can be found under each agent directory. e.g.:

Installation

TF-Agents publishes nightly and stable builds. For a list of releases read the Releases section. The commands below cover installing TF-Agents stable and nightly from pypi.org as well as from a GitHub clone.

Stable

Run the commands below to install the most recent stable release. API documentation for the release is on tensorflow.org.

$ pip install --user tf-agents[reverb]

# Use this tag get the matching examples and colabs.
$ git clone https://github.com/tensorflow/agents.git
$ cd agents
$ git checkout v0.6.0

If you want to install TF-Agents with versions of Tensorflow or Reverb that are flagged as not compatible by the pip dependency check, use the following pattern below at your own risk.

$ pip install --user tensorflow
$ pip install --user dm-reverb
$ pip install --user tf-agents

If you want to use TF-Agents with TensorFlow 1.15 or 2.0, install version 0.3.0:

# Newer versions of tensorflow-probability require newer versions of TensorFlow.
$ pip install tensorflow-probability==0.8.0
$ pip install tf-agents==0.3.0

Nightly

Nightly builds include newer features, but may be less stable than the versioned releases. The nightly build is pushed as tf-agents-nightly. We suggest installing nightly versions of TensorFlow (tf-nightly) and TensorFlow Probability (tfp-nightly) as those are the versions TF-Agents nightly are tested against.

To install the nightly build version, run the following:

# `--force-reinstall helps guarantee the right versions.
$ pip install --user --force-reinstall tf-nightly
$ pip install --user --force-reinstall tfp-nightly
$ pip install --user --force-reinstall dm-reverb-nightly

# Installing with the `--upgrade` flag ensures you'll get the latest version.
$ pip install --user --upgrade tf-agents-nightly

From GitHub

After cloning the repository, the dependencies can be installed by running pip install -e .[tests]. TensorFlow needs to be installed independently: pip install --user tf-nightly.

Contributing

We're eager to collaborate with you! See CONTRIBUTING.md for a guide on how to contribute. This project adheres to TensorFlow's code of conduct. By participating, you are expected to uphold this code.

Releases

TF Agents has stable and nightly releases. The nightly releases are often fine but can have issues due to upstream libraries being in flux. The table below lists the version(s) of TensorFlow tested with each TF Agents' release to help users that may be locked into a specific version of TensorFlow. 0.3.0 was the last release compatible with Python 2.

Release Branch / Tag TensorFlow Version
Nightly master tf-nightly
0.6.0 v0.6.0 2.3.0
0.5.0 v0.5.0 2.2.0
0.4.0 v0.4.0 2.1.0
0.3.0 v0.3.0 1.15.0 and 2.0.0

Principles

This project adheres to Google's AI principles. By participating, using or contributing to this project you are expected to adhere to these principles.

Citation

If you use this code, please cite it as:

@misc{TFAgents,
  title = {{TF-Agents}: A library for Reinforcement Learning in TensorFlow},
  author = {Sergio Guadarrama and Anoop Korattikara and Oscar Ramirez and
     Pablo Castro and Ethan Holly and Sam Fishman and Ke Wang and
     Ekaterina Gonina and Neal Wu and Efi Kokiopoulou and Luciano Sbaiz and
     Jamie Smith and Gábor Bartók and Jesse Berent and Chris Harris and
     Vincent Vanhoucke and Eugene Brevdo},
  howpublished = {\url{https://github.com/tensorflow/agents}},
  url = "https://github.com/tensorflow/agents",
  year = 2018,
  note = "[Online; accessed 25-June-2019]"
}

Disclaimer

This is not an official Google product.

Project details


Release history Release notifications | RSS feed

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distributions

No source distribution files available for this release.See tutorial on generating distribution archives.

Built Distribution

File details

Details for the file tf_agents_nightly-0.7.0.dev20201109-py3-none-any.whl.

File metadata

  • Download URL: tf_agents_nightly-0.7.0.dev20201109-py3-none-any.whl
  • Upload date:
  • Size: 1.2 MB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.2.0 pkginfo/1.6.1 requests/2.24.0 setuptools/50.3.2 requests-toolbelt/0.9.1 tqdm/4.51.0 CPython/3.6.9

File hashes

Hashes for tf_agents_nightly-0.7.0.dev20201109-py3-none-any.whl
Algorithm Hash digest
SHA256 8627bbded90ebd97588e67c325f84c9f65663ac11614b9320d7c23f2ce366c01
MD5 a177230c3cc90b633b46055c35074b2e
BLAKE2b-256 74841659ff22db9e1129a678555e7ef1d6ffbd8f5ca1f88e1184ab8ab0a405d1

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page