Skip to main content

Neural network visualization toolkit for tf.keras

Project description

tf-keras-vis

Downloads PyPI version Python package License: MIT

Notes

We've released v0.7.0! In this release, the gradient calculation of ActivationMaximization is changed for the sake of fixing a critical problem. Although the calculation result are now a bit different compared to the past versions, you could avoid it by using legacy implementation as follows:

# from tf_keras_vis.activation_maximization import ActivationMaximization
from tf_keras_vis.activation_maximization.legacy import ActivationMaximization

In addition to above, we've also fixed some problems related Regularizers. Although we newly provide tf_keras_vis.activation_maximization.regularizers module that includes the regularizers whose bugs are fixed, like ActivationMaximization, you could also use legacy implementation as follows:

# from tf_keras_vis.activation_maximization.regularizers import Norm, TotalVariation2D 
from tf_keras_vis.utils.regularizers import Norm, TotalVariation2D

Please see the release note for details. If you face any problem related to this release, please feel free to ask us in Issues page!

Overview

tf-keras-vis is a visualization toolkit for debugging tf.keras.Model in Tensorflow2.0+. Currently supported methods for visualization include:

tf-keras-vis is designed to be light-weight, flexible and ease of use. All visualizations have the features as follows:

  • Support N-dim image inputs, that's, not only support pictures but also such as 3D images.
  • Support batch wise processing, so, be able to efficiently process multiple input images.
  • Support the model that have either multiple inputs or multiple outputs, or both.
  • Support the mixed-precision model.

And in ActivationMaximization,

  • Support Optimizers that are built to tf.keras.

Visualizations

Visualizing Dense Layer

Visualizing Convolutional Filer

GradCAM

The images above are generated by GradCAM++.

Saliency Map

The images above are generated by SmoothGrad.

Usage

  • ActivationMaximization (Visualizing Convolutional Filter)
from matplotlib import pyplot as plt
from tf_keras_vis.activation_maximization import ActivationMaximization
from tf_keras_vis.activation_maximization.callbacks import Progress
from tf_keras_vis.activation_maximization.input_modifiers import Jitter, Rotate2D
from tf_keras_vis.activation_maximization.regularizers import TotalVariation2D, Norm
from tf_keras_vis.utils.model_modifiers import ExtractIntermediateLayer, ReplaceToLinear
from tf_keras_vis.utils.scores import CategoricalScore

# Create the visualization instance.
# All visualization classes accept a model and model-modifier, which, for example,
#     replaces the activation of last layer to linear function so on, in constructor.
activation_maximization = \
   ActivationMaximization(YOUR_MODEL_INSTANCE,
                          model_modifier=[ExtractIntermediateLayer('layer_name'),
                                          ReplaceToLinear()],
                          clone=False)

# You can use Score class to specify visualizing target you want.
# And add regularizers or input-modifiers as needed.
activations = \
   activation_maximization(CategoricalScore(FILTER_INDEX),
                           steps=200,
                           input_modifiers=[Jitter(jitter=16), Rotate2D(degree=1)],
                           regularizers=[TotalVariation2D(weight=1.0),
                                         Norm(weight=0.3, p=1)],
                           optimizer=tf.keras.optimizers.RMSprop(1.0, 0.999),
                           callbacks=[Progress()])

## Since v0.6.0, calling `astype()` is NOT necessary.
# activations = activations[0].astype(np.uint8)

# Render
plt.imshow(activations[0])
  • Gradcam++
from matplotlib import pyplot as plt
from matplotlib import cm
from tf_keras_vis.gradcam_plus_plus import GradcamPlusPlus
from tf_keras_vis.utils.model_modifiers import ReplaceToLinear
from tf_keras_vis.utils.scores import CategoricalScore

# Create GradCAM++ object
gradcam = GradcamPlusPlus(YOUR_MODEL_INSTANCE,
                          model_modifier=ReplaceToLinear(),
                          clone=True)

# Generate cam with GradCAM++
cam = gradcam(CategoricalScore(CATEGORICAL_INDEX),
              SEED_INPUT,
              penultimate_layer=-1)

## Since v0.6.0, calling `normalize()` is NOT necessary.
# cam = normalize(cam)

plt.imshow(SEED_INPUT_IMAGE)
heatmap = np.uint8(cm.jet(cam[0])[..., :3] * 255)
plt.imshow(heatmap, cmap='jet', alpha=0.5) # overlay

Please see the guides below for more details:

Getting Started Guides

[NOTE] If you have ever used keras-vis, you may feel that tf-keras-vis is similar with keras-vis. Actually tf-keras-vis derived from keras-vis, and both provided visualization methods are almost the same. But please notice that tf-keras-vis APIs does NOT have compatibility with keras-vis.

Requirements

  • Python 3.6-3.9
  • tensorflow>=2.0.4

Installation

  • PyPI
$ pip install tf-keras-vis tensorflow
  • Source (for development)
$ git clone https://github.com/keisen/tf-keras-vis.git
$ cd tf-keras-vis
$ pip install -e .[develop]

Use Cases

  • chitra
    • A Deep Learning Computer Vision library for easy data loading, model building and model interpretation with GradCAM/GradCAM++.

Known Issues

  • With InceptionV3, ActivationMaximization doesn't work well, that's, it might generate meaninglessly blur image.
  • With cascading model, Gradcam and Gradcam++ don't work well, that's, it might occur some error. So we recommend to use FasterScoreCAM in this case.
  • channels-first models and data is unsupported.

ToDo

  • Guides
    • Visualizing multiple attention or activation images at once utilizing batch-system of model
    • Define various score functions
    • Visualizing attentions with multiple inputs models
    • Visualizing attentions with multiple outputs models
    • Advanced score functions
    • Tuning Activation Maximization
    • Visualizing attentions for N-dim image inputs
  • Publish API documentations as a website
  • We're going to add some methods such as below
    • Deep Dream
    • Style transfer

Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tf-keras-vis-0.7.0.tar.gz (38.6 kB view details)

Uploaded Source

Built Distribution

tf_keras_vis-0.7.0-py3-none-any.whl (52.4 kB view details)

Uploaded Python 3

File details

Details for the file tf-keras-vis-0.7.0.tar.gz.

File metadata

  • Download URL: tf-keras-vis-0.7.0.tar.gz
  • Upload date:
  • Size: 38.6 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for tf-keras-vis-0.7.0.tar.gz
Algorithm Hash digest
SHA256 8bffccfab3c014076afd000dcdc926ff1569f1ba25f036fb2c7c4fb2f9c67884
MD5 63d85324cb7b4fdb85d2a80f9d2ee0bf
BLAKE2b-256 64ed8c3caca025dc21b39087d9539015f78ba1c79195ab4762034fe97b84c9bb

See more details on using hashes here.

File details

Details for the file tf_keras_vis-0.7.0-py3-none-any.whl.

File metadata

  • Download URL: tf_keras_vis-0.7.0-py3-none-any.whl
  • Upload date:
  • Size: 52.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.1 importlib_metadata/4.5.0 pkginfo/1.7.0 requests/2.25.1 requests-toolbelt/0.9.1 tqdm/4.61.1 CPython/3.9.5

File hashes

Hashes for tf_keras_vis-0.7.0-py3-none-any.whl
Algorithm Hash digest
SHA256 e5efed4eb85d497ad32769a8bd2dee2d41f45a59bca66063fac1827e6e3143f8
MD5 9db328ed1550fefd12540022ee5231f5
BLAKE2b-256 a7d72d7da444aad229f7941f0da99ed07a3fa0ad33f11a3cf85d244ef6cd0cfd

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page