A print and debugging utility that makes your error printouts look nice
Project description
pip install tf_logger
Usage
from tf_logger import TF_Logger
logger = TF_Logger(log_directory="/tmp/logs/tf_logger_test/")
logger.log(index=3, note='this is a log entry!')
logger.flush()
# Images
face = scipy.misc.face()
face_bw = scipy.misc.face(gray=True)
logger.log_image(index=4, color_image=face, black_white=face_bw)
image_bw = np.zeros((64, 64, 1))
image_bw_2 = scipy.misc.face(gray=True)[::4, ::4]
# now print a stack
for i in range(10):
logger.log_image(i, animation=[face] * 5)
This version of logger is integrated with tensorboard and at the same time prints the data in a tabular format to your stdout. - can silence stdout per key (per logger.log call) - can print with color: logger.log(timestep, some_key=green(some_data)) - can print with custom formatting: logger.log(timestep, some_key=green(some_data, percent)) where percent - uses the correct unix table characters (please stop using | and +. Use ``│``, ``┼`` instead)
A typical print out of this logger look like the following:
from tf_logger import TF_Logger
logger = TF_Logger(log_directory=f"/mnt/bucket/deep_Q_learning/{datetime.now(%Y%m%d-%H%M%S.%f):}")
logger.log_params(G=vars(G), RUN=vars(RUN), Reporting=vars(Reporting))
outputs the following
And the data from multiple experiments can be views with tensorboard.
═════════════════════════════════════════════════════
G
───────────────────────────────┬─────────────────────
env_name │ MountainCar-v0
seed │ None
stochastic_action │ True
conv_params │ None
value_params │ (64,)
use_layer_norm │ True
buffer_size │ 50000
replay_batch_size │ 32
prioritized_replay │ True
alpha │ 0.6
beta_start │ 0.4
beta_end │ 1.0
prioritized_replay_eps │ 1e-06
grad_norm_clipping │ 10
double_q │ True
use_dueling │ False
exploration_fraction │ 0.1
final_eps │ 0.1
n_timesteps │ 100000
learning_rate │ 0.001
gamma │ 1.0
learning_start │ 1000
learn_interval │ 1
target_network_update_interval │ 500
═══════════════════════════════╧═════════════════════
RUN
───────────────────────────────┬─────────────────────
log_directory │ /mnt/slab/krypton/machine_learning/ge_dqn/2017-11-20/162048.353909-MountainCar-v0-prioritized_replay(True)
checkpoint │ checkpoint.cp
log_file │ output.log
═══════════════════════════════╧═════════════════════
Reporting
───────────────────────────────┬─────────────────────
checkpoint_interval │ 10000
reward_average │ 100
print_interval │ 10
═══════════════════════════════╧═════════════════════
╒════════════════════╤════════════════════╕
│ timestep │ 1999 │
├────────────────────┼────────────────────┤
│ episode │ 10 │
├────────────────────┼────────────────────┤
│ total reward │ -200.0 │
├────────────────────┼────────────────────┤
│ total reward/mean │ -200.0 │
├────────────────────┼────────────────────┤
│ total reward/max │ -200.0 │
├────────────────────┼────────────────────┤
│time spent exploring│ 82.0% │
├────────────────────┼────────────────────┤
│ replay beta │ 0.41 │
╘════════════════════╧════════════════════╛
from tf_logger import TF_Logger
logger = TF_Logger('/mnt/slab/krypton/unitest')
logger.log(0, some=Color(0.1, 'yellow'))
logger.log(1, some=Color(0.28571, 'yellow', lambda v: f"{v * 100:.5f}%"))
logger.log(2, some=Color(0.85, 'yellow', percent))
logger.log(3, {"some_var/smooth": 10}, some=Color(0.85, 'yellow', percent))
logger.log(4, some=Color(10, 'yellow'))
logger.log_histogram(4, td_error_weights=[0, 1, 2, 3, 4, 2, 3, 4, 5])
colored output: (where the values are yellow)
╒════════════════════╤════════════════════╕
│ some │ 0.1 │
╘════════════════════╧════════════════════╛
╒════════════════════╤════════════════════╕
│ some │ 28.57100% │
╘════════════════════╧════════════════════╛
╒════════════════════╤════════════════════╕
│ some │ 85.0% │
╘════════════════════╧════════════════════╛
╒════════════════════╤════════════════════╕
│ some var/smooth │ 10 │
├────────────────────┼────────────────────┤
│ some │ 85.0% │
╘════════════════════╧════════════════════╛
Project details
Download files
Download the file for your platform. If you're not sure which to choose, learn more about installing packages.
Source Distributions
Built Distribution
File details
Details for the file tf_logger-1.1.1-py3-none-any.whl
.
File metadata
- Download URL: tf_logger-1.1.1-py3-none-any.whl
- Upload date:
- Size: 7.0 kB
- Tags: Python 3
- Uploaded using Trusted Publishing? No
File hashes
Algorithm | Hash digest | |
---|---|---|
SHA256 | 0089c0747834372e6d0e0c2ce714e2bae4b84e7733de55e6a4a33031f3d519e0 |
|
MD5 | e74e69749e47dccfd53ba0f14d128230 |
|
BLAKE2b-256 | 3ccfbe052d8c193423df7a961e6fae3206e9ed9f1439b6a69177932ce65b0ddd |