Skip to main content

Image similarity, metric learning loss functions for TensorFlow 2+.

Project description

tf-metric-learning

TensorFlow 2.2 Python 3.6

Overview

Minimalistic open-source library for metric learning written in TensorFlow2, TF-Addons, Numpy, OpenCV(CV2) and Annoy. This repository contains a TensorFlow2+/tf.keras implementation some of the loss functions and miners. This repository was inspired by pytorch-metric-learning.

Installation

Prerequirements:

pip install tensorflow
pip install tensorflow-addons
pip install annoy
pip install opencv-contrib-python

This library:

pip install tf-metric-learning

Features

  • All the loss functions are implemented as tf.keras.layers.Layer
  • Callbacks for Computing Recall, Visualize Embeddings in TensorBoard Projector
  • Simple Mining mechanism with Annoy
  • Combine multiple loss functions/layers in one model

Open-source repos

This library contains code that has been adapted and modified from the following great open-source repos, without them this will be not possible (THANK YOU):

TODO

  • Discriminative layer optimizer (different learning rates) for Loss with weights (Proxy, SoftTriple, ...) TODO
  • Some Tests 😇
  • Improve and add more minerss

Examples

import tensorflow as tf
import numpy as np

from tf_metric_learning.layers import SoftTripleLoss
from tf_metric_learning.utils.constants import EMBEDDINGS, LABELS

num_class, num_centers, embedding_size = 10, 2, 256

inputs = tf.keras.Input(shape=(embedding_size), name=EMBEDDINGS)
input_label = tf.keras.layers.Input(shape=(1,), name=LABELS)
output_tensor = SoftTripleLoss(num_class, num_centers, embedding_size)({EMBEDDINGS:inputs, LABELS:input_label})

model = tf.keras.Model(inputs=[inputs, input_label], outputs=output_tensor)
model.compile(optimizer="adam")

data = {EMBEDDINGS : np.asarray([np.zeros(256) for i in range(1000)]), LABELS: np.zeros(1000, dtype=np.float32)}
model.fit(data, None, epochs=10, batch_size=10)

More complex scenarios:

Features

Loss functions

Miners

  • MaximumLossMiner [TODO]
  • TripletAnnoyMiner ✅

Evaluators

  • AnnoyEvaluator Callback: for evaluation Recall@K, you will need to install Spotify annoy library.
import tensorflow as tf
from tf_metric_learning.utils.recall import AnnoyEvaluatorCallback

evaluator = AnnoyEvaluatorCallback(
    base_network,
    {"images": test_images[:divide], "labels": test_labels[:divide]}, # images stored to index
    {"images": test_images[divide:], "labels": test_labels[divide:]}, # images to query
    normalize_fn=lambda images: images / 255.0,
    normalize_eb=True,
    eb_size=embedding_size,
    freq=1,
)

Visualizations

  • Tensorboard Projector Callback
import tensorflow as tf
from tf_metric_learning.utils.projector import TBProjectorCallback

def normalize_images(images):
    return images/255.0

(train_images, train_labels), (test_images, test_labels) = tf.keras.datasets.cifar10.load_data()
...

projector = TBProjectorCallback(
    base_model,
    "tb/projector",
    test_images, # list of images
    np.squeeze(test_labels),
    normalize_eb=True,
    normalize_fn=normalize_images
)

Project details


Download files

Download the file for your platform. If you're not sure which to choose, learn more about installing packages.

Source Distribution

tf-metric-learning-1.0.12.tar.gz (18.4 kB view details)

Uploaded Source

Built Distribution

tf_metric_learning-1.0.12-py3-none-any.whl (31.4 kB view details)

Uploaded Python 3

File details

Details for the file tf-metric-learning-1.0.12.tar.gz.

File metadata

  • Download URL: tf-metric-learning-1.0.12.tar.gz
  • Upload date:
  • Size: 18.4 kB
  • Tags: Source
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for tf-metric-learning-1.0.12.tar.gz
Algorithm Hash digest
SHA256 22ee0b24340399540debd37acf6254ae755be8b033ff7c31d2b0cebdce57d45b
MD5 1fa38d4d7f3dbd419923d6f00b432411
BLAKE2b-256 88b451843170a893dae7919628e55409a56564886077099b59ccc05f922e465f

See more details on using hashes here.

File details

Details for the file tf_metric_learning-1.0.12-py3-none-any.whl.

File metadata

  • Download URL: tf_metric_learning-1.0.12-py3-none-any.whl
  • Upload date:
  • Size: 31.4 kB
  • Tags: Python 3
  • Uploaded using Trusted Publishing? No
  • Uploaded via: twine/3.4.2 importlib_metadata/4.8.1 pkginfo/1.7.1 requests/2.26.0 requests-toolbelt/0.9.1 tqdm/4.62.3 CPython/3.10.0

File hashes

Hashes for tf_metric_learning-1.0.12-py3-none-any.whl
Algorithm Hash digest
SHA256 c472162782dc2a8e03d003f17baf702131af459f8e4e2495cc9b11bdc430e805
MD5 fe07cc475a578297927ee11740e74279
BLAKE2b-256 9547a92e500374019b2cbdce2ee87cff7d588cf16e9fed055792fc77d9986c17

See more details on using hashes here.

Supported by

AWS AWS Cloud computing and Security Sponsor Datadog Datadog Monitoring Fastly Fastly CDN Google Google Download Analytics Microsoft Microsoft PSF Sponsor Pingdom Pingdom Monitoring Sentry Sentry Error logging StatusPage StatusPage Status page